Alternative method of sampling placentas for the assessment of uteroplacental vasculature

TY Khong, H M Chambers

Abstract
A new method for the taking and embedding of placental blocks to obtain maximum information regarding the uteroplacental vasculature was developed. This method involves taking en face blocks of the basal plate of the placenta. Results show that normal and abnormal maternal vessels are clearly delineated. In addition to conventional full thickness blocks, which provide information about the chorionic plate such as inflammation and meconium pigment uptake, and about the parenchyma in the other zones remote from the basal plate of the placenta, it is recommended that en face blocks be taken for histological assessment of the placenta.

Methods
All placentas submitted to the Department of Pathology, Queen Victoria Hospital in a 14 week period (April to July 1991) were entered into the study. Conventional blocks were taken to include the full thickness of the parenchyma from the amniotic surface through to the basal plate. A random en face block of the basal plate was also taken from each placenta (or corresponding half of a fused twin placenta) by shaving the basal plate and embedding the block on its face. All sections were examined and the number of uteroplacental arteries in the conventional blocks and alternative en face blocks were compared. Specifically, the presence or absence of physiological changes and the presence of the vasculopathy, acute atherosis, in these uteroplacental arteries were documented in each case.

Results
A total of 136 placentas were submitted for histopathological examination. There were 33 twin and two triplet placentas. In three twin placentas an en face block was taken from only one half of the placenta; therefore, 170 sets of placentas were available for comparison. Fifty five pregnancies were complicated by conditions thought to be associated with maternal vascular abnormalities (intrauterine growth retardation (n = 20), pre-eclampsia (n = 19), intrauterine growth retardation and pre-eclampsia (n = 4), systemic lupus erythematosus or mixed connective tissue disease (n = 3) and placental abruption (n = 9). The other 81 placentas were sent for various reasons: preterm delivery (n = 41), ascertainment of zygosity in multiple pregnancy (n = 20), unusual gross lesions in the placenta (n = 3), fetal distress or fetal anomaly (n = 11) and other maternal or obstetrical reasons, such as hepatitis, diabetes mellitus, placenta praevia and polyhydramnios (n = 6).

When blocks were taken en face to the basal...
plate, occasionally the morphological picture was that of islands of villi with basal plate or superficial decidua very much like the hillocks and valleys seen in a topographical map. Uteroplacental arteries were defined as those arteries with fibrinoid matrix in the walls in which were embedded endovascular trophoblast (fig 1). Absence of physiological vascular changes could be seen in the form of unconverted spiral arteries that retained their muscular and elastic tissue within the walls (fig 2); this was observed only in pregnancies complicated by pre-eclampsia, or intrauterine growth retardation, or both. A further abnormal finding was the presence of endovascular trophoblast either free in the lumen or attached to the intima in the abnormal pregnancies (fig 3). Acute atherosis could be identified in the en face blocks (fig 4).

Uteroplacental arteries—spiral arteries
Placental sampling

showing physiological changes, were seen in 91 en face blocks and in 38 full thickness blocks, while spiral arteries devoid of physiological changes were seen in two en face and two full thickness blocks of the same two cases. Thus more vessels could be seen in the en face basal plate blocks more often than could be obtained in the full thickness blocks (93 or 54.7% v 40 or 23-5%). For the detection of uteroplacental arteries en face blocks were superior to full thickness blocks in 80 cases (in 69 corresponding full thickness blocks no spiral arteries were detected), inferior in 16 cases (no arteries were detected in 16 en face blocks) and no different in 72 cases (no arteries were detected in 61 en face or full thickness blocks). Features of abnormal placentation were seen more often also in en face blocks: intraluminal endovascular was seen in five en face but not in any full thickness blocks while acute atherosis was seen in one case in only one en face block. Villitis of unknown aetiology was clearly seen in the en face blocks in seven cases.

Discussion

More maternal spiral arteries could be identified by embedding an en face block of the basal plate than by conventional full thickness blocks. This confirms previous observations10 that the basal plates from full thickness blocks often do not include maternal vessels. Utilising full thickness blocks taken at every 20 mm along the maximum diameter of the placenta and thus yielding six to eight blocks per placenta, Khong found spiral arteries in only 73% of placenta,10 an expensive low yield, considering the number of blocks. The pick-up rate of 54.7% from one en face block in the present study compares very favourably.

The finding of uteroplacental arteries showing physiological changes in the basal plate is not a reliable indicator of normality because deeper decidual and myometrial segments may not show such changes. The more diagnostically useful feature is the finding of spiral arteries without physiological changes and in, in this respect, these were seen equally frequently in en face and full thickness blocks. It could therefore be argued that en face blocks offer no advantage over full thickness blocks. However, we used only one en face block in this evaluation and we could detect more maternal arteries more frequently in en face than full thickness blocks, allowing a theoretically increased likelihood of detecting unconverted arteries. Furthermore, en face blocks proved superior in detecting other parameters of abnormal placentation, such as acute atherosis11 or intraluminal endovascular trophoblasts. En face blocks also proved useful in detecting villitis of unknown aetiology as these lesions are often distributed among anchoring villi in some cases.12 No valid comment can be made regarding its comparison with full thickness blocks because these lesions are often focal.

A potential pitfall of this method of sampling for assessing uteroplacental arteries was the possible confusion between the unconverted spiral arteries and the thicker muscular arteries of the mainstem villi. However, the presence of an investing layer of syncytiotrophoblast in these mainstem villi, surrounding fetal mesenchyme and the absence of surrounding decidua or trophoblast easily distinguished fetal and maternal arteries.

Preliminary results of this work were presented to the 36th Annual Scientific meeting of The Royal College of Pathologists of Australasia, September 1991.

We gratefully acknowledge the technical assistance of FM Hill, AR Foreman, C Mott and M Tamblyn.