Lipopeliosis: fat induced sinusoidal dilatation in transplanted liver mimicking peliosis hepatitis

L Ferrell, N Bass, J Roberts, N Ascher

Abstract
A distinct peliosis-like lesion arose in the liver allograft of a 51 year old man. This lesion was caused by necrotic, fat-laden hepatocytes that released fat globules into the sinusoids. These then became strikingly distended with cysts, thus mimicking peliosis hepatitis. It is suggested that this lesion be called lipopeliosis.

(J Clin Pathol 1992;45:1109–1110)

Several aetiological factors have been implicated in the clinical lesion comprising dilated, blood-filled sinusoids known as peliosis hepatitis. Recently, peliosis-like lesions caused by baccillary angiomatosis in the liver have been described. We now describe another distinct peliosis-like lesion that occurred in a transplanted, steatotic liver following centrilobular hepatocyte injury and necrosis. This lesion was composed of sinusoids diluted by fat globules. Such a lesion has been seen as a complication of using a fatty liver for transplantation.

Results
A biopsy specimen taken six days after transplantation showed large spaces in the centrilobular zone associated with hepatocyte ballooning and necrosis caused by preservation (ischaemic) injury. These spaces mimicked the cystic, blood-filled spaces seen in peliosis hepatitis (fig 1A). Moderate fatty change of both macrovesicular and small droplet types was noted in centrilobular hepatocytes, but only a few foci of small fat droplets were present in perilobular zones (fig 1A). Routine haematoxylin and eosin staining showed occasional flattened cells lining the cystic spaces; factor VIII and collagen type IV immunoperoxidase stains were positive along the lining of the spaces, confirming that they were sinusoids (fig 1B). No blood was present in the spaces. Scattered neutrophils and mononuclear cells were also present in the centrilobular zone, and were associated with the necrosis and fat globules. The spaces were still present in the next two biopsy specimens taken 10 and 18 days after surgery, and the frozen section sample stained for neutral lipid by the oil red O technique showed fat globules within them (fig 1C). Two more biopsy specimens taken 25 and 33 days after transplantation showed that the spaces were noticeably smaller, and Kupffer cells with foamy change were the most preva-

Figure 1A Liver biopsy specimen six days after surgery, showing dilated sinusoidal spaces without blood, mild macro- and microvesicular fatty change in adjacent hepatocytes, and a few scattered inflammatory cells (open arrows). Note the few flat cells lining the spaces that may represent endothelial cells (closed arrows) (haematoxylin and eosin).
Figure 1B Factor VIII immunoperoxidase stain of the liver at day 6, showing some staining around the large spaces and similar intensity of staining in the non-dilated sinusoids. The space in the centre stains more prominently and represents the central vein (CV).

Figure 1C Oil red O stain of the liver biopsy specimen at day 18 still shows the presence of the dilated sinusoids, containing neutral lipid as shown by the large dark droplets.

Figure 1D Liver biopsy specimen at day 33 shows centrilobular fibrosis (arrow) and a decrease in the size of the fatty spaces. Insets: Kupffer cells in the sinusoids contain vacuoles consistent with fat uptake (haematoyxlin and eosin).

Discussion
This case shows a unique lesion associated with steatosis and preservation injury (ischaemic necrosis of the centrilobular hepatocytes) in a hepatic allograft. The mechanism producing this lesion is presumed to be the release of fat from the dying hepatocytes. The fat, in turn, accumulates in, and dilates, the sinusoids, resulting in a histological lesion that superficially resembles peliosis hepatis. We propose that the term lipopeliosis should be used to describe this distinctive lesion.

A previous report of peliosis hepatis after liver transplantation described the typical lesion of dilated, blood-filled sinusoids in a patient in whom ischaemic liver damage caused by an ABO incompatible graft might have contributed. The lesion observed in our patient differs from typical peliosis in the absence of blood in the cystically dilated sinusoids and the striking staining of fat in the spaces. Large extracellular fat globules in dysfunctional hepatic allografts with pre-existing steatosis have been noted in one previous report. This clearly represents part of the spectrum of the lesion seen in our patient. The pronounced sinusoidal dilatation and obstruction by lipopeliosis in the transplanted liver may account, in part, for the frequently severe dysfunction of donor livers which contain a heavy fat infiltrate before transplantation.

Although lipopeliosis may clearly arise in the setting of necrosis of fatty hepatocytes in the donor liver following liver transplantation, it is conceivable that any fatty condition of the liver with a superimposed ischaemic event could result in a similar lesion. We are, however, unaware of any such descriptions.

We thank David Geller for his editorial advice.