Correspondence

labelling. 1 PCNA immunohistochemical expression (evaluated with the PC10 monoclonal antibody) seems to be related to cellular proliferation in many normal tissues and neoplasms,2 such as gastrointestinal lymphomas,5 central nervous system tumours,1,6 lung neuroendocrine neoplasms,7 and prostatic carcinomas.8 However, in other tumours, like breast and gastric carcinomas, 11 PC10 expression seems aberrant and not strictly related to proliferative activity.1,7-13

Various factors unrelated to cell proliferation may influence the immunohistochemical expression of PCNA, including posttranscriptional regulation (and deregulation) of the PCNA gene,5,14 long half-life of the PCNA protein,15 involvement of PCNA protein in DNA repair synthesis,16 and tissue and section processing—type and intensity of the fixatives, fixation time, section heating, immunohistochemical techniques.15,17

Further problems in PCNA immunohistochemical staining, as in other kinetic quantitive immunohistochemical studies, concern evaluation and scoring methods.14,15 Should we use quantitative or semi quantitative methods and how should cells be counted? Which tumour areas should be evaluated (the most positive or random selected areas?) Which immunoreactive cells should be evaluated (all positive cells or only the most intensely stained?)

Particular attention should be also drawn to the kind of antibody used to localise PCNA. Different staining patterns may be seen with different antibodies, and this may add to confusing the confounding results.

In our opinion PCNA immunostaining should be evaluated with great caution and in some fields even with scepticism. More work is needed to assess the extent and range of PCNA staining in different tissues and lesions (neoplastic and non-neoplastic). PCNA counts should be evaluated concurrently with the different anti-PCNA available antibodies and the results should be compared with other “proliferation markers”7 and especially with clinical data. The possibility that PCNA immunostaining may have diagnostic or prognostic value is intriguing and carefully performed clinicopathological studies are needed to assess this possibility further. This will be the only way to know if we are faced with an interesting but clinically worthless tool or with an important test to be added to the routine evaluation of neoplasms.

AgNOR quantification in tumour pathology: What is actually evaluated?

The interest of pathologists in interphase silver stained nuclear organiser regions (AgNORs) has increased since it was shown that malignant cells frequently have higher AgNOR numbers compared with corresponding benign or normal cells. Moreover, interphase AgNOR numbers are closely related to cell proliferative activity, suggesting that this parameter might also have prognostic importance.

Nuclear organiser regions (NORs) are chromosome regions containing ribosomal RNA genes 17 and other related RNA genes. NORs are associated with a group of argyrophilic proteins, and can be visualised by silver staining in routinely processed cytological and histological samples. At light microscopy AgNORs appear as well defined black dots, which in interphase cells are exclusively distributed throughout the lighter stained nuclei. Each black dot corresponds, at the ultrastructural level, to a fibrillar centre with the surrounding dense fibrillar component. The number of AgNORs in quiescent cells is generally low (most lymphocytes and stromal cells have only one), while in proliferating cells, such as cancer cells, a high AgNOR count is present. Over the past six years the silver staining technique has become widespread among pathologists, but the lack of a standardised staining protocol has led to misinterpretation of structures and mistaken assignments.18 Looking in fact at the micrographs reported—for example, by Giril et al. (breast carcinoma)17 Oifer et al. (colonic carcinoma)17 Cheville et al. (prostate carcinoma)18 and Kaneko et al. (lung carcinoma),18 it is evident that not just the AgNORs, but the whole nuclei have been stained by silver and counted as NORs.

The selective visualisation of AgNORs is subject, apart from the fixative used, to the temperature and temporal length of the staining reaction. These two variables are inversely related to each other: the higher the temperature, the shorter the time required for NOR silver staining. Therefore the staining reaction is prolonged beyond the time for selective visualisation of NORs, all the other nuclear structures are progressively stained, until the whole nucleus appears homogeneously stained silver positive, before evident that different nuclear structures have been stained and counted in various laboratories, and this has caused disagreement about AgNOR numbers reported in individual studies on the same neo-

plastic lesions.

In a recent investigation it was shown that the total interphase AgNOR area was closely related to the whole nuclear area stained by silver when staining was prolonged beyond the optimal time for selective interphase NOR visualisation.1

To obtain comparable data between different laboratories the whole nuclear area stained by silver should be evaluated and the area occupied by the silver stained nuclei per cell measured using image analysis instead of AgNOR counting. Because AgNOR area and nuclear area are not directly comparable, the morphometric analysis of silver stained nuclei will certainly have the same clinical and biological relevance demonstrated for interphase AgNORs.

D TERE

Centro di Patologia Cellulare, Dipartimento di Patologia Sperimentale, Università degli Studi di Bologna, Via San Giacomo 14, 40126 Bologna, Italy.

6 Derszini N, Farabegoli F, Tréret D. Relationship between interphase AgNOR distribution and nuclear size in cancer cells. Histochem J (in press).

Method for grading breast cancer

Parham and colleagues18 have proposed a new and “simplified” method for grading breast cancer unclassified cases that is superior to the Bloom and Richardson method,2 which they rightly criticise for its lack of precision. We agree entirely with this criticism, but are rather surprised that they do not refer to our recent publication in which, for precisely this reason, we have devised modifications which provide objective criteria for the evaluation of the three morphological components of histological grade.3 We have shown in a study of over 1500 patients that histological grade, using this method, provides powerful prognostic information, and in combination with clinical size and lymph node status, the Nottingham Prognostic Index which can be used by clinicians to stratify patients for...
appropriate treatment. This method for histological grade has been adopted by the Royal College of Pathologists Working Group for use in the NHS Breast Screening Programme. Parham and colleagues have concluded from a small series of cases (105) that mitotic counts and semiquantitative assessment of tumour necrosis are the most significant factors. Unfortunately, despite their criticism of the Bloom and Richardson method, the authors have fallen foul of exactly the same imprecision which they eschew. Although they have followed us in defining the field area for mitotic counting, they do not state in their paper how many mitoses per field they have counted for each point scored. Their evaluation of tumour necrosis also lacks clarity. It is admirable to define the dimensions of an area of necrosis but there is surely a flaw in the assessment of multiple foci if only the largest focus is counted. Thus a tumour could have several foci of necrosis each of which might score 1 or 2 points, but this only qualifies it for an overall score of 2, less than a tumour with a single focus. This relative lack of numerical data in this paper is also surprising and we are not told the number of cases in each necrosis group. For these reasons we must conclude that not only are there doubts about the value of this new method, but that fear that for lack of an adequate description no one else will actually be able to use it.

A number of other points are pertinent. The study is confined to tumours of no special type which seriously reduces its utility, since, as we have shown recently, only 50% of cases of invasive breast carcinoma fall into this category. It is remarkable that no reference is made to this paper to lymph node stage, widely regarded as one of the most powerful prognostic factors available in breast cancer, especially as Fisher and colleagues have shown a close correlation between tumour necrosis and nodal status. Finally, any method which divides patients into four rather than three groups will appear to be more discriminating. We would refer the authors to our paper confirming the utility of the Nottingham Prognostic Index. Over using the integer scores five groups of patients are identified with an annual mortality ranging from 1:5 to 32%. In practice, however, prognosis must be related to the available treatment. In our experience, the use of more than three groups serves no useful purpose.

Immunophenotype of multinucleated cells in giant cell lesions

I read the interesting paper by Dr. Dousset and colleagues and discuss it here in the light of our own results. In our investigation enzyme histochemistry was applied to cryostat sections of unfixed and undecalcified bone of 101 different tumours or tumour-like lesions of bone. In all cases the osteolast-like giant cells showed the same pattern of reactions, which was identical with that of osteoclasts but different from that of the multinucleated neoplastic cells: a lack of demonstrable alkaline phosphatase, but clearly detectable activity of tetratrate-resistant acid phosphatase (TRACP) activity; non-specific acid esterase, leucinamidopeptidase, and NADH-tetrazolium oxido-reductase activity. Microspectrometry of the enzyme reaction product in giant cells of varying sizes in six different bone tumours exhibited the same trend in all cases: a continuous decline of the relative activities of non-specific esterase and NADH-tetrazolium oxido-reductase, but an increase in the TRACP activity with increasing cell size. Among the very large giant cells, however, there were cells with both high and very low TRACP activities. Additionally, electron microscopic examination of the same tissue showed swollen mitochondria with cristolysis, fragmentation, and swelling of cisterne of endoplasmic reticulum and the nuclear envelope, more and larger digestive vacuoles with myelin-like material in bone

Correspondence