Comparison of electron microscopy and immunocytochemistry in tumour diagnosis

Dar et al, in a careful retrospective review, compared the relative usefulness of electron microscopy and immunocytochemistry in tumour diagnosis.1 They found that electron microscopy alone did not include small round cell tumours of children and young adults, in which electron microscopy is very useful in diagnosis and in the recognition of "new" entities.2 In our experience, electron microscopy may also be helpful in diagnosing primary or metastatic large cell undifferentiated tumours, as well as in other "fine print" situations.

A viscometric method of measuring plasma fibrinogen concentration

We have also studied the correlation of plasma fibrinogen concentration against the difference in viscosity between plasma and serum. We can confirm the work of Ernst et al;1 we obtained a similar correlation coefficient of r = 0.824 (p < 0.001) using samples with values that were not excessively raised. The relation, however, does not hold true for samples with raised serum viscosity as seen in myeloma or macroglobulinaemia;2 when these were included in our correlation we obtained r = 0.117 (p = NS).

The relation of fibrinogen to serum viscosity is not logarithmic as suggested by Ernst et al. It is exponential. Using logarithmic transformation we obtained a correlation of r = 0.927 (p < 0.001). This included normal and abnormal samples with high fibrinogen as well as myeloma and macroglobulinaemia.

As a simple quick calculation the method of Ernst et al can be used in normal subjects but the limitations of this method in abnormal conditions must be borne in mind.


Reference
