Correlations between holo-transcobalamin II, holo-haptocorrin, and total B₁₂ in serum samples from healthy subjects and patients

S N Wickramasinghe, S Fida

Abstract

Aims—To study the correlations between total vitamin B₁₂ (B₁₂), holo-haptocorrin, and holo-transcobalamin II (holo-TCII) concentrations in human sera; the association between reduced holo-TCII concentrations and macrocytosis attributable to B₁₂ deficiency.

Methods—Serum samples from 38 healthy volunteers, 113 patients with normal total serum B₁₂ concentrations and 93 patients with low total serum B₁₂ were studied. Holo-TCII was removed from whole serum by adsorption with amorphous precipitated silica, and both whole serum and adsorbed serum were assayed for B₁₂ using the Becton Dickinson vitamin B₁₂ [¹⁴C] radioassay kit.

Results—In all three groups of subjects studied there were strong correlations between the logarithms of the total serum B₁₂ and the holo-haptocorrin concentrations with regression coefficients between 0.884 and 0.967. By contrast, the correlations between the logarithms of the total serum B₁₂ and holo-TCII concentrations were weaker, especially in the patients with normal or low total serum B₁₂, for whom the regression coefficients were 0.491 and 0.391, respectively. Analysis of the clinical records of a proportion of the patients studied indicated that there were many more patients with low holo-TCII concentrations than with haematological disturbances related to B₁₂ deficiency.

Conclusions—The total serum B₁₂ concentration is a relatively poor indicator of holo-TCII concentrations and, therefore, of the ability of serum to deliver B₁₂ to tissues. Additional information regarding B₁₂ values can therefore be gleaned from measuring holo-TCII concentrations in the serum. Low holo-TCII concentrations, however, are an early sign of negative B₁₂ balance and are frequently unassociated with haematological abnormalities caused by B₁₂ deficiency.

The main vitamin B₁₂ (cobalamin) binding proteins in the serum are haptocorrin (transcobalamin I and III) and transcobalamin II (TCII). Haptocorrin does not seem to be involved in delivering vitamin B₁₂ (B₁₂) to cells; this function is performed by TCII. Despite this, most of the B₁₂ in serum is bound to haptocorrin—that is, it is found as holo-haptocorrin—and in normal subjects only 6–20% is bound to TCII—that is, it is found as holo-TCII. Herbert et al have suggested that B₁₂ deficiency develops in three overlapping stages: (1) early negative B₁₂ balance in which holo-TCII concentrations are reduced, holo-haptocorrin and total serum B₁₂ concentrations are normal, and there are no biochemical, haematological, or neurological consequences of B₁₂ deficiency; (2) B₁₂ depletion in which holo-TCII and holo-haptocorrin concentrations are reduced but there are no biochemical, haematological, or neurological consequences of B₁₂ deficiency; and (3) B₁₂ deficiency in which, in addition to reduced holo-TCII and holo-haptocorrin concentrations, there are increasing biochemical, haematological, or neurological abnormalities attributable to B₁₂ deficiency. These authors have further proposed that a proper evaluation of the B₁₂ concentration of an individual must include measurements of both total serum B₁₂ as well as holo-TCII concentrations. In this study we investigated the latter contention by studying the correlations between total serum B₁₂, holo-haptocorrin, and holo-TCII concentrations in sera from 38 healthy volunteers and 206 patients, 93 of whom had low total serum B₁₂ concentrations.

Methods

Sera from 38 healthy adult meat eaters of both sexes, 113 adult patients with normal total serum B₁₂ concentrations, and 93 adult patients with low total serum B₁₂ concentrations were studied. The sera had been separated from clotted venous blood within 4 hours of venesection and stored at -20°C for up to one month. Total serum B₁₂ concentrations were remeasured in all sera using the Becton Dickinson vitamin B₁₂ [¹⁴C] radioassay kit (Becton Dickinson, Immunodiagnostics, New York, USA); in this kit the vitamin B₁₂ binding protein is porcine intrinsic factor and the contaminating R proteins are blocked by a large excess of vitamin B₁₂ analogues.

Holo-TCII was removed from whole serum by a modification of the method recommended by Das et al. A slurry containing 3 g synthetic amorphous precipitated silica (Sipernat 283 LS) (PQ Corporation, Valley Forge, Philadelphia, USA) in 20 ml of dis-
Correlation coefficients (r) for relations between total serum B_{12}, holo-haptocorrin, and holo-TCII in various groups of subjects studied

<table>
<thead>
<tr>
<th>Coordinates</th>
<th>X</th>
<th>Y</th>
<th>Group*</th>
<th>N</th>
<th>r</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log holo-haptocorrin</td>
<td>Log total serum B_{12}</td>
<td>A</td>
<td>38</td>
<td>0.967</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>113</td>
<td>0.933</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>95</td>
<td>0.884</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>244</td>
<td>0.972</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Log total serum B_{12}</td>
<td>Log holo-TCII</td>
<td>A</td>
<td>38</td>
<td>0.715</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>113</td>
<td>0.491</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>95</td>
<td>0.391</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>244</td>
<td>0.720</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td>Log holo-haptocorrin</td>
<td>Log holo-TCII</td>
<td>A</td>
<td>38</td>
<td>0.523</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>113</td>
<td>0.228</td>
<td>< 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>93</td>
<td>0.001</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>244</td>
<td>0.576</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

* A: healthy volunteers; B: patients with normal total serum B_{12}; C: patients with low total serum B_{12}; D: all cases studied (A + B + C).

Figure 1 Correlation between the logarithms of the holo-haptocorrin and total serum B_{12} values in the three groups of subjects studied: ○ healthy volunteers; △ patients with normal total serum B_{12} × patients with low total serum B_{12} values.

Figure 2 Correlation between the logarithms of the total serum B_{12} and holo-TCII concentrations in the three groups of subjects studied: ○ healthy volunteers; △ patients with normal total serum B_{12} × patients with low total serum B_{12} values.

tilled water was prepared and stored at 4°C. The holo-TCII was adsorbed by adding 100 µl of the slurry containing 3 mg silica to 500 µl serum, vortexing the mixture, and leaving it at room temperature for 10 minutes. The mixture was then centrifuged at 5000 x g for 10 minutes and the supernatant fluid assayed for B_{12} using the Becton Dickinson radioassay kit according to the manufacturer's instructions. The value obtained represents the holo-haptocorrin concentration. The holo-TCII concentration was determined by subtracting the holo-haptocorrin concentration from the total serum B_{12} concentration.

Results

As in the case of total serum B_{12}, holo-haptocorrin and holo-TCII concentrations had a log-normal distribution. Therefore, the data were subjected to logarithmic transformation for the derivation of median values and 95% reference ranges and for the study of various correlations.

In our laboratory the median value and the 95% reference range for total serum B_{12} measured in 100 healthy adults by the radioassay kit were, respectively, 336 and 165–684 ng/l. The corresponding values for holo-haptocorrin in the 38 healthy volunteers in the present study were 322 ng/l and 151–682 ng/l and for holo-TCII they were 57 and 13–244 ng/l, respectively.

Figure 1 and the table show that there were strong correlations between the logarithms of the holo-haptocorrin concentration and the logarithm of the total serum B_{12} concentration in all three groups of individuals studied. All patients with low total serum B_{12} had low holo-haptocorrin concentrations. Figure 2 and the table show the weaker correlations that existed between the logarithms of the total serum B_{12} and the holo-TCII concentrations. In fact, 34 of the 93 patients with low total serum B_{12} had normal holo-TCII concentrations and 13 of the 113 patients with normal total serum B_{12} (six with a total serum B_{12} value between 165 and 200 ng/l and seven with a value of >200 ng/l) had low holo-TCII concentrations. In healthy volunteers and patients with normal total serum B_{12} concentrations, the lowest correlation coefficients were observed for the relation between the logarithms of the holo-haptocorrin and the holo-TCII concentrations and in patients with low total serum B_{12} concentrations no correlation was found between these two variables (fig 3 and table).

None of the 13 patients with normal total serum B_{12} and low holo-TCII concentrations and only one of the 34 patients with low total serum B_{12} and normal holo-TCII concentrations had a high mean corpuscular volume (MCV) attributable to B_{12} deficiency. The exception was a patient with pancreatitis, obstructive jaundice, macrocytic anaemia, megaloblastic erythropoiesis, a deoxuryridine suppressed value of 40%, a total serum B_{12} of 62 ng/l, a holo-TCII concentration of 18 ng/l.
Serum holo-transcobalamin II concentrations

Figure 3 Correlation between the logarithms of the holo-TCII and holo-haptocorrin values in the three groups of subjects studied: ○ healthy volunteers; △ patients with normal total serum B₁₂ × patients with low total serum B₁₂ values.

and an abnormal Schilling test (part I) result of 1.6%. At the time of writing, the case notes of 30 of the 59 patients with low total serum B₁₂ and low holo-TCII concentrations had been analysed in detail; only nine of these 30 patients had an abnormal deoxyuridine suppressed value or a high MCV attributable to B₁₂ deficiency.

Discussion

In healthy volunteers, patients with normal total serum B₁₂ concentrations, and patients with low total serum B₁₂ concentrations, there were strong significant correlations between holo-haptocorrin and total serum B₁₂ concentrations. In these groups 93.5%, 87.0%, and 78.1%, respectively, of the variability in the logarithm of the total serum B₁₂ concentration could be explained by its correlation with the logarithm of the holo-haptocorrin concentration. Thus a falling total serum B₁₂ concentration indicates a falling holo-haptocorrin concentration and, presumably, a falling hepatic B₁₂ store. By contrast, there was a considerably weaker correlation between total serum B₁₂ and holo-TCII concentrations: the correlation was best in the healthy volunteers in whom 51.1% of the variation in the logarithm of the total serum B₁₂ could be accounted for by its correlation with the logarithm of the holo-TCII concentration and worst in the patients with low total serum B₁₂ concentrations in whom the corresponding figure was only 15.3%. Therefore, low total serum B₁₂ concentrations do not necessarily indicate reduced holo-TCII concentrations and, consequently, a reduced supply of B₁₂ to tissues. Indeed, in the present study, 36.6% of patients with low total serum B₁₂ concentrations had normal holo-TCII concentrations and 11.5% of patients with normal total serum B₁₂ had low holo-TCII concentrations. The weakness of the correlation between total serum B₁₂ and holo-TCII concentrations observed in this investigation may account for the finding of normal total serum B₁₂ in some patients with biochemical or clinical manifestations of B₁₂ deficiency and low serum B₁₂ values in other patients who do not seem to have the harmful effects of B₁₂ deficiency.

In the present investigation, low holo-TCII concentrations were found in a number of patients without macrocytosis. Furthermore, there were many more patients with low holo-TCII concentrations than with haematological disturbances attributable to B₁₂ deficiency. These observations confirm the conclusion from two previous studies that low holo-TCII concentrations are an early sign of subnormal vitamin B₁₂ absorption and negative vitamin B₁₂ balance. In one study reduced holo-TCII concentrations were found one month after the last injection of 1000 µg cyanocobalamin in haematologically normal patients with treated pernicious anaemia. In the other study low holo-TCII values were found in the presence of normal total serum B₁₂ and normal serum homocysteine concentrations in patients with AIDS. As low holo-TCII values may be found in the absence of haematological abnormalities, the serum concentration of holo-TCII at which tissue cells sustain the effects of B₁₂ deficiency may vary from individual to individual and from tissue to tissue.

Our data support the model of developing B₁₂ deficiency proposed by Herbert and his colleagues and their view that a proper study of B₁₂ values should include not only measurements of total serum B₁₂ but also of holo-TCII concentration. Additional studies are needed to define the clinical importance of diagnosing and treating patients with early negative B₁₂ balance.
