Method for improving lymph node retrieval from gastrectomy specimens

The ACP broadsheet 133 by Scott et al outlined the general procedures used in their department for gross examination of the stomach.1 We agree with the methods they describe but wish to suggest an alternative approach for dealing with gastrectomy specimens which gives high lymph node yields.

This method is a modification of the Japanese Research Society for Gastric Cancer guidelines, as outlined in a paper in the Japanese Journal of Surgery.2 We recently started using it at the request of one of our surgeons who has a major interest in surgery for gastric cancer.

A summary of the method we use is as follows. The specimens are received fresh, unopened. The anatomical location of the various lymph node groups related to major arteries is identified on the gross fresh specimen (figure) and the relevant piece(s) of fat/omentum containing each lymph node group is then dissected off the specimen. This is easy when the specimen is fresh and each piece(s) representing a specific lymph node group is then placed in a separate labelled pot with 10% formalin for fixation. When all the fat/omentum has been removed the stomach is opened along the greater curve, pinned to a cork board, and floated upside down in a formalin bath until the next day. As all the fat has been removed these specimens fix very well with overnight fixation.

After fixation the specimen is photographed. The relevant measurements and blocks from the stomach are taken as described by Scott et al.1 Each piece of fat/omentum is then finely sliced using a sharp knife, and also palpated. All lymph nodes found are sampled and identified as belonging to a specific anatomical lymph node group. A form is issued with each report giving details of the number of lymph nodes found in each group and the number in each group with metastatic disease together with a summary of the number of lymph nodes involved in the N₁, N₂, and N₃ groups.

In our department this method is currently used for all radical gastrectomies because we believe this increases the yield of lymph nodes. The table shows the number of lymph nodes retrieved and the number with metastasis from each of the cases received to date.

The advantages to this system of handling are as follows:

1. There is a high yield of lymph nodes as each piece of fat/omentum is small, no longer attached to the stomach, is easy to handle, and can therefore be quickly and thoroughly sliced.

2. The number and anatomical location of all nodes recovered can be accurately detailed to regional areas. The anatomical identification is done at the initial examination when the fat/omentum containing the lymph node groups is separated. This is important with lymph node groups along vascular pedicles—for example, left gastric artery—as the anatomy of these nodes may alter when fixed attached to the main specimen, especially after it has been opened.

3. Once all the fat and omentum has been removed from the stomach, the stomach fixes quicker and is easier to handle and take blocks from as there is no fat.

4. This method can be modified to deal with any partial or total gastrectomy for malignancy in order to maximise lymph node yield. Please note that if there is suspected serosal disease the removal of fat and omentum will not affect assessment of this unless it is exceptionally vigorous.

In summary, we feel this is a valuable and worthwhile procedure which improves lymph node recovery and gives detailed anatomical location of all lymph nodes removed. With a little practice the initial dissection in the fresh state is relatively easy to perform and the total time involved for complete dissection is comparable to conventional methods.

KEY TO LYMPH NODE GROUPS

1. - right cardinal
2. - left cardinal
3. - lesser curve
4a. - greater curve - right
4b. - " - " - left
5. - suprapyloric
6. - infrapyloric
7. - left gastric
8. - common hepatic artery
9. - coeliac artery
10. - splenic hilum
11. - splenic artery

Diagrammatic representation of the lymph node groups along major arteries.

<table>
<thead>
<tr>
<th>Total number of lymph nodes recovered and number with metastasis from each case</th>
<th>Type of total gastrectomy</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of lymph nodes recovered</td>
<td>11</td>
<td>29</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>No with metastasis</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

Correspondence

D J FARELL
D J SCOTT
Department of Histopathology,
Newcastle General Hospital,
Westgate Road,
Newcastle upon Tyne NE4 6BE

Xanthogranulomatous gastritis: an entity or a secondary phenomenon?

In their paper, Guarino et al seem to imply that the "xanthogranulomatous gastritis" associated with their case of xanthogranulomatosus cholecystitis (XGC) is an independent entity.1 Albeit with the same cause, they postulate that this is related to a peculiar composition of bile, damaging the mucosa of both the stomach and the gall bladder, leading to the state that they are unaware of similar causes of an association between XGC and xanthogranulomatous inflammation in the bowel wall, but believe that "it is conceivable that deepening of the xanthogranulomatosus process in the gall bladder and adhesions in the stomach may result in a transmural involvement of the gastric wall".

It is now accepted that xanthogranulomatous pylonephritis (XPN), a condition analogous to XGC, can produce deep sinususes or fistulae both within and beyond the abdominal cavity to sites such as the small or large bowel, the diaphragm, the lung or skin,4 as well as between organs.1,4 Although a fistula between the stomach and the gall bladder has been recorded1,2 it is unclear whether such should be classified as a gall bladder fistula or not.5

Sinus or fistula formation is therefore quite uncommon, although a frequently unrecognised, complication of xanthogranulomatous inflammation in the gall bladder, the kidney and, even the appendix.2 In my experience nodules of xanthogranulomatous tissue, separated by bands of fibrous tissue, can often be found along the track of the extension of this inflammation as it "points" to other organs. (Guarino et al describe the gall bladder in their case to be "adherent to the gastric antrum by means of a fibrous band, with the proposed separation entity of "xanthogranulomatous gastritis". Despite this, to my knowledge, extension of XGC into the stomach has not been recorded before.

M A PARSONS
Department of Pathology
University of Sheffield Medical School
Sheffield S10 2UL

560