
Dr Ellison et al comment: Dr Piette and colleagues make some valuable suggestions in their letter about our article. We were also keen to compare the presence of intramural platelet deposition and titres of antiphospholipid antibodies in our series of patients. Three of the six had died before antiphospholipid antibodies were measured, however, and we could find no record of these tests in the case-notes of the other three. We were unable to trace any stored serum.

We would agree that a study of other vascular patterns in the antiphospholipid syndrome would be interesting. Though difficult to substantiate or to quantify, our impression was that intramural platelet deposition was more readily found in the cerebral vasculature of patients with the longest histories of neuropsychiatric symptoms and the most deformed, thickened, small vessels.

Carcinoid pattern in adrenal phaeochromocytoma

In response to the paper by Harach and Bergholm, I would like to comment on a similar phenomenon that I have encountered in two adrenal phaeochromocytomas. Out of five cases, one sporadic and the other associated with multiple endocrine neoplasia type IIA (MEN IIA). The carcinoid areas seen microscopically were reminiscent of the classic midgit pattern with packets of uniform cells. The tumour cells were smaller and less pleomorphic than the typical pleomorphic, polygonal chief cells of the usual phaeochromocytoma. These carcinoid foci were, however, minor histological components and both tumours had adjacent areas of typical phaeochromocytoma. The medullary carcinoma of the patient with MEN IIA, interestingly, did not share this carcinoid phenotype. The question of metaplasia and whether both tumours had adjacent areas of typical phaeochromocytoma. The medullary carcinoma of the patient with MEN IIA, interestingly, did not share this carcinoid phenotype. The question of metaplasia and whether both tumours had adjacent areas of typical phaeochromocytoma has been described.1 Metastases aside, if one believes in the dispersed (diffuse) neuroendocrine system, it is not unexpected that overlaps in histological pattern will occur.

RUNJAN CHETTY
University of Oxford, Nuffield Department of Pathology, John Radcliffe Hospital, Headington, Oxford OX3 9DU

Dr Ellison et al comment: Dr Piette and colleagues make some valuable suggestions in their letter about our article. We were also keen to compare the presence of intramural platelet deposition and titres of antiphospholipid antibodies in our series of patients. Three of the six had died before antiphospholipid antibodies were measured, however, and we could find no record of these tests in the case-notes of the other three. We were unable to trace any stored serum.

We would agree that a study of other vascular patterns in the antiphospholipid syndrome would be interesting. Though difficult to substantiate or to quantify, our impression was that intramural platelet deposition was more readily found in the cerebral vasculature of patients with the longest histories of neuropsychiatric symptoms and the most deformed, thickened, small vessels.

Carcinoid pattern in adrenal phaeochromocytoma

In response to the paper by Harach and Bergholm, I would like to comment on a similar phenomenon that I have encountered in two adrenal phaeochromocytomas. Out of five cases, one sporadic and the other associated with multiple endocrine neoplasia type IIA (MEN IIA). The carcinoid areas seen microscopically were reminiscent of the classic midgit pattern with packets of uniform cells. The tumour cells were smaller and less pleomorphic than the typical pleomorphic, polygonal chief cells of the usual phaeochromocytoma. These carcinoid foci were, however, minor histological components and both tumours had adjacent areas of typical phaeochromocytoma. The medullary carcinoma of the patient with MEN IIA, interestingly, did not share this carcinoid phenotype. The question of metaplasia and whether both tumours had adjacent areas of typical phaeochromocytoma has been described.1 Metastases aside, if one believes in the dispersed (diffuse) neuroendocrine system, it is not unexpected that overlaps in histological pattern will occur.

RUNJAN CHETTY
University of Oxford, Nuffield Department of Pathology, John Radcliffe Hospital, Headington, Oxford OX3 9DU

Dr Ellison et al comment: Dr Piette and colleagues make some valuable suggestions in their letter about our article. We were also keen to compare the presence of intramural platelet deposition and titres of antiphospholipid antibodies in our series of patients. Three of the six had died before antiphospholipid antibodies were measured, however, and we could find no record of these tests in the case-notes of the other three. We were unable to trace any stored serum.

We would agree that a study of other vascular patterns in the antiphospholipid syndrome would be interesting. Though difficult to substantiate or to quantify, our impression was that intramural platelet deposition was more readily found in the cerebral vasculature of patients with the longest histories of neuropsychiatric symptoms and the most deformed, thickened, small vessels.

Carcinoid pattern in adrenal phaeochromocytoma

In response to the paper by Harach and Bergholm, I would like to comment on a similar phenomenon that I have encountered in two adrenal phaeochromocytomas. Out of five cases, one sporadic and the other associated with multiple endocrine neoplasia type IIA (MEN IIA). The carcinoid areas seen microscopically were reminiscent of the classic midgit pattern with packets of uniform cells. The tumour cells were smaller and less pleomorphic than the typical pleomorphic, polygonal chief cells of the usual phaeochromocytoma. These carcinoid foci were, however, minor histological components and both tumours had adjacent areas of typical phaeochromocytoma. The medullary carcinoma of the patient with MEN IIA, interestingly, did not share this carcinoid phenotype. The question of metaplasia and whether both tumours had adjacent areas of typical phaeochromocytoma has been described.1 Metastases aside, if one believes in the dispersed (diffuse) neuroendocrine system, it is not unexpected that overlaps in histological pattern will occur.

RUNJAN CHETTY
University of Oxford, Nuffield Department of Pathology, John Radcliffe Hospital, Headington, Oxford OX3 9DU
Post mortem sampling for biochemistry and toxicology

Dr Forrest is to be congratulated on his ACP broadsheet concerning the usefulness of post mortem sampling for biochemistry and toxicology, a much neglected subject. There is one assay not mentioned among the generally useless enzyme determinations and that is the gamma glutamyl transpeptidase (γGT). Over many years I have found it to be a reliable additional investigation in those dying with indications of alcohol misuse. Where there is no active liver disease, a raised γGT result from a peripheral blood sample gives added confidence for chronic alcoholism to be included in the cause of death.

TO ASHWORTH
Walsgrave Hospitg,
Walsgrave CV1 2DX


Measuring Alcohol Consumption is an excellent resource for all those interested, at either a research or clinical level, in alcohol use and misuse. Accurate assessments of alcohol use are vital in monitoring alcoholism treatment and prevention programmes and investigating the links between alcohol consumption and non-alcoholic medical problems. Ray Litten and John Allen have edited a multiauthored volume which is highly organised, cohesive, integrated and practical. It is divided into two main sections: the first dealing with psychosocial measures; and the second with biochemical measures of alcohol consumption.

The first chapter provides a good overview of self-report methods, and emphasises that verbal reports are neither valid nor invalid, but that the important issue is that certain conditions and procedures are more conducive to response accuracy and validity. The second chapter provides an excellent review of “computerized approaches to alcohol assessment”, and the finding that the results of computerised testing are generally similar to those of personal or pencil-and-paper interviews.

Timeline Follow-Back (TLFB) is the best psychometrically evaluated and field-tested self-reported alcohol consumption instrument to date. Chapter 3 provides a description of the methods and a thorough discussion of its validity, and appropriate applications of this and other self-report measures in various research and clinical situations. A useful appendix provides instructions for administering TLFB which can be modified for different target groups or research projects. The final chapter of the section on psychosocial measures discusses the accuracy of subjective and collateral accounts of drinking behaviour.

The second section reviews many new and complex biochemical indicators of alcohol consumption. An overview divides biological markers into several types: markers of predisposition to alcoholism (trait markers); markers of chronic or acute consumption (state markers); and markers of chronic or acute damage. Blood alcohol estimations are useful in the estimation of alcohol consumption, two new markers of high alcohol consumption (carbohydrate-deficient transferrin and 5-hydroxytryptophol), and the usefulness of protein acetaldehyde adducts as state markers of consumption are all discussed. The last two chapters describe non-invasive methods for the measurement of transdermal ethanol as an assessment of ethanol consumption. Although these techniques are easy to use in an outpatient setting where patients are seen on a weekly basis and has a high degree of sensitivity and specificity. A wearable, electronic ethanol sensor, an adaptation of the same chemico-technological device used in breathalysers, is also described. Unlike the device, it provides real-time rather than cumulative monitoring of alcohol use, and therefore gives accurate quantitative and temporal tracking of alcohol consumption over extended periods.

This superbly organised, thorough, and readable book is highly recommended for all those who need to assess alcohol intake.

CAROLINE C HORWATH


The authors stated in the Preface that this volume was intended to be a single guide to the diagnosis of most non-neoplastic diseases encountered in diagnostic human ultrastructural pathology. It is a companion volume to the book Ultrastructural Appearances of Tumours prepared by the same authors.

This is a multiauthor work with uniformly high standards throughout, although the chapters range in the extent to which they cover aspects of the subject. As a whole the volume is best regarded as an atlas of ultrahigh quality photomicrographs with a relatively brief, but extensively referenced, textual introduction to each chapter. The photomicrographs cover most of the commonly encountered entities and there is a generous selection of illustrations of the infrequent or rare lesions, but this cannot be regarded as comprehensive, given that the authors intended to cover the range of non-neoplastic diseases where electron microscopy can contribute to the diagnosis. There is a wide enough coverage, however, for the book to act as a valuable aide memoire for an ultrastructural pathologist while pondering over a difficult specimen. This approach will be of little value to the histopathologist with occasional exposure to electron microscopy...