Image analysis derived ploidy and proliferation indices in soft tissue sarcomas: Comparison with clinical outcome

B A Michie, C Black, R P Reid, A Barrett, D L Hamblen

Abstract

Aims—To compare prognostic information obtained by image analysis cytometry of paraffin wax embedded soft tissue sarcomas with conventional assessment.

Methods—A CAS 200 image analyser was used to determine DNA content of Feulgen stained cytology preparations and tissue sections and to quantify immunostaining by Ki67 and PC10 antibodies. A mitotic count in 50 high power fields was undertaken and histological grade assigned by the Trojani system. Clinical details including follow up and outcome were obtained by case note review. The Kruskal-Wallis one way analysis test, Spearman ρ significance test, Kaplan-Meier method, and log-rank test were applied in statistical analysis.

Results—Ploidy status, DNA index, 2-5c exceeding rate, 5c exceeding rate, mitotic count and Trojani grade all correlated significantly with clinical outcome. The relation between Ki67 index and outcome did not reach significance. The PC10 index and outcome were not related. Only 2-5c exceeding rate, 5c exceeding rate, and mitotic count correlated significantly with Trojani grade.

Conclusions—DNA content determination of soft tissue sarcomas by image analysis provides quantifiable information of benefit in prediction of outcome. Larger series are required to determine the independent value of ploidy. In this study quantification of anti-Ki67 and anti-PC10 immunostaining was not of prognostic benefit) by contrast with mitotic count and Trojani grade.

Soft tissue sarcomas are often associated with poor patient survival. Conventional assessment of prognosis includes evaluation of histological type, grade, anatomical site, and stage. Histological type alone is not usually a prognostic indicator whereas grade is more predictive.1 The most reproducible soft tissue sarcoma grading system to date is the Trojani system, a scoring system that assesses degree of differentiation, extent of necrosis, and mitotic activity.1 Although of recognised value as an indicator of prognosis there are numerous instances where Trojani grade and outcome are not in concordance.2 The work of Enneking2 has led to improved clinicopathological staging of soft tissue sarcomas although some of the staging criteria are difficult to apply.

There is thus a need to identify additional prognostic indicators in this discipline. Image analysis cytometry offers a means of measuring DNA content (ploidy) while preserving tissue architecture and cytological detail. Ploidy determination by image analysis is a significant prognostic indicator in many malignancies.3,4 Similarly, immunostaining of cell cycle related antigens, for example Ki67 and PC10, has been widely used to predict survival.5,6 Microwave retrieval11 allows application of Ki67 antibody to retrospective paraffin embedded material. This study was undertaken to determine if ploidy and proliferation data obtained by image analysis of paraffin wax embedded soft tissue sarcomas correlate with patient survival and to compare these data with conventional assessment of Trojani grade and mitotic count.

Methods

Thirty three soft tissue sarcomas were selected from the files of the Scottish Bone Tumour Registry and the Pathology Department. The sample was chosen to examine a range of histological types and a range of grades. Case note review was undertaken and histological diagnosis, site, follow up, treatment, and survival was extracted. All haematoxylin and eosin stained slides for each case were reviewed and one tissue block was selected from the most poorly differentiated area. Only prechemotherapy or preradiotherapy blocks were used. Sections (3 μm) for proliferation analysis by immunostaining were mounted on poly-l-lysine coated slides, 3, 5, 7, 9, 11, and 15 μm sections for ploidy analysis were mounted on conventional slides and a 50 μm section for disaggregation placed in a glass universal container. All sections were dewaxed in xylene and hydrated in graded alcohols.

The 50 μm sections were disaggregated by a modification of the standard method of Hedley et al.12 The sections were incubated for 120 minutes at 37°C in 2 ml of 0-9% pepsin in normal buffered saline adjusted to pH 1·5 with 2N HCl. The resulting suspension was centrifuged for three minutes and the pellet resuspended in buffered saline and cytocentrifuged on to glass slides in a Shandon Cytospin 2 at 650 rpm for five minutes.

The cytopsin and histology sections for ploidy analysis were hydrolysed in 5N HCl for...
60 minutes and transferred to Feulgen stain solution (Becton-Dickinson, Oxford, UK) for 60 minutes. After three rinses in rinse reagent (Becton-Dickinson, Oxford, UK) the slides were washed in deionised water, immersed in acid alcohol for five minutes, dehydrated, cleared in xylene, and coverslips were added. A control slide imprinted with rat hepatocytes of known DNA content was added to each batch to calibrate the image analyser and ensure adequate staining.

The 3 μm cytospin slide section and the thickest section from the remainder (5–15 μm) from which sufficient nuclei could be counted were analysed for each case with a CAS 200 Image Analyser (Becton-Dickinson, Oxford, UK). A minimum of 300 tumour cells and 50 diploid control cells (lymphocytes, polymorphs, or connective tissue cells) were analysed and the data presented as a DNA histogram. In tissue sections control and tumour cell spindle shaped nuclei were only measured in the longitudinal plane.

Ploidy was assigned by combined interpretation of cytospin and tissue section histograms. An average DNA index of the main histogram peak for each case was calculated. A DNA index of 0–9:1–1 was accepted as diploid, <0:9 or 1:11–1:30 as near diploid aneuploid, and >1:3 as aneuploid. The 2:5c exceeding rate and 5c exceeding rate are the proportions of tumour nuclei with a DNA content of more than 2:5 and 5 times haploid respectively. Average 2:5c and 5c exceeding rates were calculated for each case and expressed as a percentage.

Tissue sections for Ki67 immunostaining were microwaved twice for five minutes in preboiled 10 mM citrate buffer adjusted to pH 6:0 with 2N sodium hydroxide. Primary Ki67 monoclonal antibody (Dakopatts, High Wycombe, UK) was applied at 1:25 dilution, incubated for 120 minutes at room temperature, and binding detected by the avidin-biotin method. Primary PC10 monoclonal antibody was applied at a 1 in 200 dilution and incubated for 16 hours at 4°C and immunostaining was detected by the same method. All immunostained sections were counterstained with methyl green. Small intestine, lymph node, proliferative endometrium, myometrium and skin sections were included in each immunostaining batch as controls and a negative control (same protocol without primary antibody) was included for each.

Immunostaining was quantified by measuring a minimum of 20 random fields or 1000 nuclei with CAS 200 Quantitative Proliferation Index software. Mitotic figures in 50 high power fields (×400 magnification, field area = 0.2 mm²) were counted. Trojani grade was assigned using all pretreatment haematoxylin and eosin sections in view of the need to assess the extent of necrosis.

The significance of any correlation between the continuous variables (DNA index, 2:5c exceeding rate, 5c exceeding rate, Ki67 index, PC10 index, and mitotic count) and Trojani grade was calculated with the Kruskal-Wallis one way analysis test, and the relation between ploidy assignment and grade by the Spearman ρ test. The 2:5c exceeding rate, 5c exceeding rate, mitotic count, Ki67 index, and PC10 index were each separated into high and low groups by the median. Survival curves were used as the measure of clinical

Table: Ploidy and proliferation indices in soft tissue sarcomas

<table>
<thead>
<tr>
<th>Classification</th>
<th>Diagnosis</th>
<th>Follow up (months)</th>
<th>Trojani grade</th>
<th>Clinical status</th>
<th>Ploidy</th>
<th>DNA index</th>
<th>2:5c (%)</th>
<th>5c (%)</th>
<th>Mitotic count</th>
<th>Ki67 index</th>
<th>PC10 index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fibrosarcoma</td>
<td>60</td>
<td>II</td>
<td>DOD</td>
<td>A</td>
<td>1:35</td>
<td>50:4</td>
<td>4:1</td>
<td>30</td>
<td>0:8</td>
<td>78.4</td>
</tr>
<tr>
<td>2</td>
<td>Malignant fibrosarcoma</td>
<td>36</td>
<td>I</td>
<td>NED</td>
<td>A</td>
<td>1:50</td>
<td>74:5</td>
<td>6:6</td>
<td>0</td>
<td>3:2</td>
<td>31:2</td>
</tr>
<tr>
<td>3</td>
<td>Malignant fibrous histiocytoma</td>
<td>31</td>
<td>II</td>
<td>BOD</td>
<td>A</td>
<td>2:26</td>
<td>41:3</td>
<td>12:3</td>
<td>1:3</td>
<td>1:58</td>
<td>8:2</td>
</tr>
<tr>
<td>4</td>
<td>Myxoid liposarcoma</td>
<td>131</td>
<td>I</td>
<td>NED</td>
<td>D</td>
<td>1:04</td>
<td>14:3</td>
<td>1:2</td>
<td>1</td>
<td>2</td>
<td>3:25</td>
</tr>
<tr>
<td>5</td>
<td>Myxoid liposarcoma</td>
<td>120</td>
<td>II</td>
<td>MD</td>
<td>NDA</td>
<td>1:28</td>
<td>50:1</td>
<td>12:1</td>
<td>1</td>
<td>1</td>
<td>23:4</td>
</tr>
<tr>
<td>6</td>
<td>Myxoid liposarcoma</td>
<td>50</td>
<td>II</td>
<td>DOD</td>
<td>A</td>
<td>2:41</td>
<td>50:1</td>
<td>11:5</td>
<td>0</td>
<td>1:28</td>
<td>37:5</td>
</tr>
<tr>
<td>7</td>
<td>Myxoid liposarcoma</td>
<td>31</td>
<td>I</td>
<td>NED</td>
<td>D</td>
<td>1:15</td>
<td>43:5</td>
<td>0</td>
<td>0</td>
<td>6:24</td>
<td>1:9</td>
</tr>
<tr>
<td>8</td>
<td>Round cell liposarcoma</td>
<td>12</td>
<td>I</td>
<td>DOD</td>
<td>NDA</td>
<td>1:28</td>
<td>50:1</td>
<td>12:1</td>
<td>1</td>
<td>1</td>
<td>23:4</td>
</tr>
<tr>
<td>9</td>
<td>Round cell liposarcoma</td>
<td>6</td>
<td>II</td>
<td>MD</td>
<td>NDA</td>
<td>1:22</td>
<td>27:2</td>
<td>0:8</td>
<td>0</td>
<td>1:2</td>
<td>1:2</td>
</tr>
<tr>
<td>10</td>
<td>Leiomyosarcoma</td>
<td>13</td>
<td>III</td>
<td>MD</td>
<td>A</td>
<td>2:74</td>
<td>68:3</td>
<td>45:5</td>
<td>30</td>
<td>0</td>
<td>78:4</td>
</tr>
<tr>
<td>12</td>
<td>Alveolar rhabdomyosarcoma</td>
<td>48</td>
<td>III</td>
<td>DOD</td>
<td>A</td>
<td>1:41</td>
<td>86:3</td>
<td>86</td>
<td>89</td>
<td>2</td>
<td>207:5</td>
</tr>
<tr>
<td>13</td>
<td>Haemangioendothelioma</td>
<td>38</td>
<td>I</td>
<td>EOD</td>
<td>D</td>
<td>1:08</td>
<td>21:8</td>
<td>0:3</td>
<td>0</td>
<td>3:37</td>
<td>10:2</td>
</tr>
<tr>
<td>15</td>
<td>Synovial sarcoma</td>
<td>60</td>
<td>II</td>
<td>EOD</td>
<td>D</td>
<td>1:23</td>
<td>21:0</td>
<td>0:6</td>
<td>36</td>
<td>0</td>
<td>16:4</td>
</tr>
<tr>
<td>16</td>
<td>Synovial sarcoma</td>
<td>98</td>
<td>I</td>
<td>NED</td>
<td>NDA</td>
<td>0:82</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>1:17</td>
<td>20:9</td>
</tr>
<tr>
<td>17</td>
<td>Synovial sarcoma</td>
<td>12</td>
<td>I</td>
<td>EOD</td>
<td>D</td>
<td>2:99</td>
<td>104:4</td>
<td>2:12</td>
<td>2:03</td>
<td>1:25</td>
<td>36:9</td>
</tr>
<tr>
<td>18</td>
<td>Malignant schwannoma</td>
<td>44</td>
<td>III</td>
<td>NED</td>
<td>D</td>
<td>1:78</td>
<td>32:8</td>
<td>11:6</td>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Malignant schwannoma</td>
<td>72</td>
<td>II</td>
<td>DOD</td>
<td>A</td>
<td>2:75</td>
<td>89:7</td>
<td>52</td>
<td>0</td>
<td>5:9</td>
<td>38:9</td>
</tr>
<tr>
<td>20</td>
<td>Malignant schwannoma</td>
<td>55</td>
<td>I</td>
<td>EOD</td>
<td>D</td>
<td>0:96</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1:6</td>
</tr>
<tr>
<td>21</td>
<td>Malignant mesenchymoma</td>
<td>36</td>
<td>II</td>
<td>DOD</td>
<td>A</td>
<td>1:33</td>
<td>99</td>
<td>82</td>
<td>85</td>
<td>1:34</td>
<td>51:8</td>
</tr>
<tr>
<td>22</td>
<td>Epithelioid sarcoma</td>
<td>75</td>
<td>II</td>
<td>MD</td>
<td>NDA</td>
<td>0:96</td>
<td>49</td>
<td>0:4</td>
<td>4</td>
<td>1:7</td>
<td>14:2</td>
</tr>
<tr>
<td>23</td>
<td>Epithelioid sarcoma</td>
<td>133</td>
<td>II</td>
<td>NED</td>
<td>D</td>
<td>1:13</td>
<td>37:7</td>
<td>4:8</td>
<td>6</td>
<td>0</td>
<td>48:4</td>
</tr>
<tr>
<td>24</td>
<td>Epithelioid sarcoma</td>
<td>72</td>
<td>II</td>
<td>NED</td>
<td>D</td>
<td>1:09</td>
<td>27:2</td>
<td>1:8</td>
<td>8</td>
<td>0</td>
<td>29:4</td>
</tr>
<tr>
<td>25</td>
<td>Epithelioid sarcoma</td>
<td>131</td>
<td>I</td>
<td>NED</td>
<td>NDA</td>
<td>1:13</td>
<td>70:6</td>
<td>11:6</td>
<td>3</td>
<td>0</td>
<td>29:4</td>
</tr>
<tr>
<td>26</td>
<td>Epithelioid sarcoma</td>
<td>14</td>
<td>I</td>
<td>MD</td>
<td>A</td>
<td>1:72</td>
<td>65:8</td>
<td>11:2</td>
<td>7</td>
<td>0</td>
<td>3:6</td>
</tr>
<tr>
<td>27</td>
<td>Soft tissue sarcoma</td>
<td>21</td>
<td>II</td>
<td>DOD</td>
<td>A</td>
<td>1:63</td>
<td>73</td>
<td>12:2</td>
<td>126</td>
<td>0:31</td>
<td>2:4</td>
</tr>
<tr>
<td>28</td>
<td>Soft tissue sarcoma</td>
<td>48</td>
<td>II</td>
<td>NED</td>
<td>D</td>
<td>0:98</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>3:1</td>
</tr>
<tr>
<td>29</td>
<td>Soft tissue sarcoma</td>
<td>24</td>
<td>II</td>
<td>NED</td>
<td>D</td>
<td>0:93</td>
<td>41</td>
<td>5:3</td>
<td>81</td>
<td>0</td>
<td>9:3</td>
</tr>
<tr>
<td>30</td>
<td>Soft tissue sarcoma</td>
<td>6</td>
<td>III</td>
<td>NED</td>
<td>D</td>
<td>1:24</td>
<td>41:6</td>
<td>3:8</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>Soft tissue sarcoma</td>
<td>65</td>
<td>III</td>
<td>NED</td>
<td>D</td>
<td>0:58</td>
<td>49:3</td>
<td>2:3</td>
<td>8</td>
<td>0</td>
<td>4:1</td>
</tr>
<tr>
<td>33</td>
<td>Alveolar soft part sarcoma</td>
<td>121</td>
<td>I</td>
<td>NED</td>
<td>D</td>
<td>1:19</td>
<td>37:5</td>
<td>15</td>
<td>0</td>
<td>0:91</td>
<td>7:8</td>
</tr>
</tbody>
</table>

NED = no evidence of disease; EOD = evidence of disease; MD = metastatic disease; DOD = died of disease; D = diploid; NDA = near diploid aneuploid; A = aneuploid.
Image analysis derived ploidy and proliferation indices in soft tissue sarcomas

Results

The table presents the data. When compared with outcome, aneuploidy (DNA index >1.3, p = 0.007), high mitotic count (>10/50 fields, p = 0.035), and Trojani grade III were each associated with significantly diminished survival. Similarly high mitotic count (>37.7%, p = 0.003) and 5c exceeding rate (>3.8%, p = 0.035) were each associated with significantly diminished survival. There was a trend when Trojani grade III (p = 0.021) were associated with poor survival. There was a trend when Ki67 index was plotted against outcome (p = 0.088).

Mitotic count

DNA index

Figure 1

Figure 2

Figure 3

PLOIDY ANALYSIS

Adequate Feulgen staining of calibration slides was achieved in each batch. Insufficient control nuclei were identified in one cytospin. Ploidy analysis was performed by the Karyo-Meier method and significance was calculated by the log-rank test.

Results:

The table presents the data. When compared with outcome, aneuploidy (DNA index >1.3, p = 0.007), high mitotic count (>10/50 fields, p = 0.035), and Trojani grade III were each associated with significantly diminished survival. Similarly high mitotic count (>37.7%, p = 0.003) and 5c exceeding rate (>3.8%, p = 0.035) were each associated with significantly diminished survival. There was a trend when Trojani grade III (p = 0.021) were associated with poor survival. There was a trend when Ki67 index was plotted against outcome (p = 0.088).

Mitotic count

DNA index

Figure 1

Figure 2

Figure 3

PLOIDY ANALYSIS

Adequate Feulgen staining of calibration slides was achieved in each batch. Insufficient control nuclei were identified in one cytospin. Ploidy analysis was performed by the Karyo-Meier method and significance was calculated by the log-rank test.

Results:

The table presents the data. When compared with outcome, aneuploidy (DNA index >1.3, p = 0.007), high mitotic count (>10/50 fields, p = 0.035), and Trojani grade III were each associated with significantly diminished survival. Similarly high mitotic count (>37.7%, p = 0.003) and 5c exceeding rate (>3.8%, p = 0.035) were each associated with significantly diminished survival. There was a trend when Trojani grade III (p = 0.021) were associated with poor survival. There was a trend when Ki67 index was plotted against outcome (p = 0.088).

Mitotic count

DNA index

Figure 1

Figure 2

Figure 3

PLOIDY ANALYSIS

Adequate Feulgen staining of calibration slides was achieved in each batch. Insufficient control nuclei were identified in one cytospin. Ploidy analysis was performed by the Karyo-Meier method and significance was calculated by the log-rank test.

Results:

The table presents the data. When compared with outcome, aneuploidy (DNA index >1.3, p = 0.007), high mitotic count (>10/50 fields, p = 0.035), and Trojani grade III were each associated with significantly diminished survival. Similarly high mitotic count (>37.7%, p = 0.003) and 5c exceeding rate (>3.8%, p = 0.035) were each associated with significantly diminished survival. There was a trend when Trojani grade III (p = 0.021) were associated with poor survival. There was a trend when Ki67 index was plotted against outcome (p = 0.088).

Mitotic count

DNA index

Figure 1

Figure 2

Figure 3

PLOIDY ANALYSIS

Adequate Feulgen staining of calibration slides was achieved in each batch. Insufficient control nuclei were identified in one cytospin. Ploidy analysis was performed by the Karyo-Meier method and significance was calculated by the log-rank test.

Results:

The table presents the data. When compared with outcome, aneuploidy (DNA index >1.3, p = 0.007), high mitotic count (>10/50 fields, p = 0.035), and Trojani grade III were each associated with significantly diminished survival. Similarly high mitotic count (>37.7%, p = 0.003) and 5c exceeding rate (>3.8%, p = 0.035) were each associated with significantly diminished survival. There was a trend when Trojani grade III (p = 0.021) were associated with poor survival. There was a trend when Ki67 index was plotted against outcome (p = 0.088).
preparation where the average human cellular DNA content of 7·18 pg was used to position diploidy in relation to the histogram. In the remaining cytospins lymphocyte nuclei were used as controls in 25 cases and polymorphonuclear granulocytes in seven. No tissue section histograms were generated in six cases due to excess nuclear overlap. In these cases the cytospin alone was utilised. Only the 3μ tissue section was suitable for ploidy analysis in a further six cases. Benign non-endothelial spindle cells were used as controls in most (65%) tissue sections and lymphocytes were used as control cells in the remainder.

Average coefficient of variation of the main peak ranged from 2·41% to 28·4% (mean 9·3%). This value was diminished in cytospins (mean 6·9%) indicating generally narrower peaks. In one case a diploid histogram was obtained by cytospin analysis of presumed tumour cells whereas tissue section histograms were of a clearly aneuploid tumour. A total of three hypodiploid near diploid aneuploid (DNA index <0·9) histograms were generated.

PROLIFERATION ANALYSIS
Both anti-Ki67 and anti-PC10 immunostaining were confined to nuclei, and control tissues revealed staining patterns expected for proliferation markers: the proliferative compartments of endometrium, intestinal crypts, and lymph nodes were positively stained whereas myometrium and gastrointestinal stromal cells were negative. Negative controls were not immunostained. In general anti-Ki67 and anti-PC10 immunostaining was uniform. There was no anti-Ki67 immunostaining in 11 cases and anti-PC10 was negative in two. Indices obtained for PC10 (mean 16·7%) were generally higher than those for Ki67 (mean 1·58%). There was no statistical correlation between the proliferation indices (Ki67 index, PC10 index, and mitotic count).

Discussion
Ploidy status and related indices (DNA index, 2·5c exceeding rate, and 5c exceeding rate) correlated significantly with survival. These results indicate that image analysis ploidy assessment is a useful prognostic indicator in soft tissue sarcomas. The value of 2·5c and 5c exceeding rates has been recognised before.13 Interestingly, these indices also correlated with Trojani grade whereas ploidy assignment and DNA index did not. There are conflicting results with regard to the relation between ploidy and Trojani grade in previous studies.14-15 It is our opinion that it is more important that a potential indicator of prognosis correlate with survival rather than grade. Larger series are required to assess independently the value of ploidy in this discipline by multivariate analysis and to assess ploidy of individual histological types of soft tissue sarcoma.

The acceptable range of diploid by image analysis is debatable. Some authors accept up to a DNA index of 1·25 as diploid whereas others recognise near diploid aneuploidy.4 Hypodiploid histograms were generated in three instances in the current study. The possibility that tumour cells can lose DNA (hypodiploid) during replication—for example, by deletions—leads to theoretical misgivings regarding flow cytometry where the first histogram peak is usually regarded as diploid without any means of excluding hypodiploidy.

In some previous studies 100–200 tumour cell nuclei were measured.13-14,16 Recently it has been recognised that for statistical purposes measurement of 300 nuclei is more accurate.17 Hence 300 tumour cells and 50 control cells were measured in each sample in this study. In most previous series lymphocytes have been used to position diploidy and lymphocytes are recognised as adequate control cells in cytology preparations.18 In tissue sections the small nuclear area of a lymphocyte can lead to setting of an incorrect low diploid DNA content value. Similarly, the spiral configuration of endothelial cells in tissue sections can lead to under-representation of tissue section diploidy.16 Both lymphocytes and endothelial cells were avoided as controls in tissue sections in this study.

Preservation of tissue architecture and ease of preparation are the advantages of ploidy assessment from tissue sections. There are, however, theoretical drawbacks in that the number of incompletely sectioned nuclei increases with decreasing section thickness. There was broad agreement between cytology preparation data and tissue section data in this study and in one case tissue section analysis was critical to accurate ploidy assignment. No ploidy data were obtained on tissue sections due to excess nuclear overlap in 18% of the cases. We believe that tissue section ploidy analysis should only be used in combination with cytology preparation analysis, which is recognised as the “gold standard” because most nuclei are intact.

The proliferation analysis results are less conclusive. There was a recognisable trend between high Ki67 index and poor outcome but significance was not attained. The protocol for application of Ki67 antibody to paraffin embedded material has only recently become available11 and presumably the value of this antibody as a prognostic indicator will soon be elucidated. There are theoretical misgivings about the suitability of PC10 antibody as a proliferation marker and prognostic indicator due to the role of the antigen in DNA repair, its long half life, its expression in non-cycling cells, and its inducibility by growth factors.18 The PC10 index was of no value in this study.

Mitotic count is often used as a routine prognostic indicator, is of recognised value in soft tissue sarcomas, and is incorporated in the Trojani grade. Larger series are required to assess independently the value of mitotic count and Trojani grade correlated significantly with each other and with survival.

In conclusion, assessment of ploidy by image analysis is of value in the prediction of likely outcome in a patient with a soft tissue sarcoma established by biopsy. Similarly, conventional assessment of Trojani grade and
mitotic count is also of proved utility. Ki67 index requires further evaluation in this field, whereas PC10 index is unlikely to be useful.