Pathogenicity and virulence of coagulase negative staphylococci in relation to adherence, hydrophobicity, and toxin production in vitro

C Molnár, Z Hevessy, F Rozgonyi, C G Gemmell

Abstract
Aims—To study the pathogenicity and virulence characteristics of Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus saprophyticus.
Methods—BALB/c mice were challenged intraperitoneally with graded doses of three strains belonging to each species. LD₅₀ were measured for each strain. Haemolysin (α- and β-) and enzyme (DNAase, lipase, and esterase) production in vitro were measured qualitatively and quantitatively. Adhesion to plastic was measured and related to cell surface hydrophobicity among the strains.
Results—S saprophyticus proved the most virulent (LD₅₀ = 2-7 - 2-9 x 10⁵ cfu/g body weight) while S epidermidis was the least virulent (LD₅₀ = 6-8 x 10⁵ cfu/g body weight). An enlarged spleen was the most common macroscopic pathological feature. Kidney, liver, and more rarely peri toneal abscesses were also seen in the infected animals. No direct correlation was found between adherence in vitro, cell surface hydrophobicity, or toxin/enzyme biosynthesis and virulence in mice.
Conclusion—The results show that coagulase negative staphylococci are pathogenic in BALB/c mice. It is clear that these bacteria can cause invasive disease. However, the in vitro characteristics of coagulase negative staphylococci are not related to the pathogenicity of the organisms in mice.

The role of coagulase negative staphylococci in different human infections has been recognised, particularly after the temporary or long term implantation of plastic devices into the body,¹⁻⁵ and other invasive interventions such as irradiation and immunosuppressive treatment.⁶⁻⁸

Coagulase negative staphylococci have a pathogenic role in infections of the urinary tract, cerebrospinal fluid shunts and prostheses; in septicemias in premature neonates and in adults receiving intensive care; in peritonitis in patients receiving continuous ambulatory peritoneal dialysis; and in postoperative endocarditis.⁹ Szabo et al found that these organisms are the second most common pathogens in infected burn lesions. (Szabò J, et al. Abstract presented at the 16th International Congress of Chemotherapy, Jerusalem, 1989).

Staphylococcus epidermidis proved the most common cause of the infections mentioned above¹ ²⁻⁷ ¹⁰ except in those of the urinary tract where Staphylococcus saprophyticus dominates.¹¹ Staphylococcus haemolyticus seems to rank third in order of frequency.¹²

The study of the pathogenesis of coagulase negative staphylococci has shown that several extracellular metabolites are produced by these micro-organisms.¹³⁻¹⁵ There are also many substances on the surfaces of the bacteria involved in pathogenesis, such as haemagglutinin, capsule, slime, fibronectin binding proteins and collagen binding proteins.¹⁶⁻²³

The aim of the present study was to investigate the virulence of the three most common coagulase negative Staphylococcus species in experimental infections of mice on the basis of lethality, splenomegaly, and the prevalence of tissue abscesses in relation to hydrophobicity, adherence, and toxin production.

Methods
BACTERIAL STRAINS
S epidermidis (three strains) were isolated from blood or wound discharge from patients with left atrioventricular stenosis after valve implantation, severe aplastic anaemia, and pneumonia. S haemolyticus (three strains) were isolated from the skin of a burn patient, from the blood of a case of septicemia, and from the urine of a patient with prostatitis. The two clinical S saprophyticus strains were from the urine of a patient with chronic pyelonephritis and from the wound infection of a burn patient, respectively. The third strain was the reference strain S saprophyticus HNCMB 110008. The strains were identified according to a combined taxonomic scheme derived from Kloos and Schleifer²⁴ and Akatov et al.²⁵ The strains were stored in trypticase-soy broth containing 25% glycerol at −20°C and subcultured at six monthly intervals. Full details are presented in table 1.

ADHERENCE
Adherent growth was examined using the
Table 1 Clinical data of coagulase negative staphylococcal strains

<table>
<thead>
<tr>
<th>Staphylococcus sp</th>
<th>Strain No</th>
<th>Patient</th>
<th>Department</th>
<th>Diagnosis</th>
<th>Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>S epidermidis</td>
<td>5905</td>
<td>Male</td>
<td>Paediatrics</td>
<td>Pneumonia</td>
<td>Blood</td>
</tr>
<tr>
<td>S epidermidis</td>
<td>8602</td>
<td>Male</td>
<td>Paediatrics</td>
<td>Aplastic anaemia</td>
<td>Blood</td>
</tr>
<tr>
<td>S epidermidis</td>
<td>8915</td>
<td>Female</td>
<td>Cardiac surgery</td>
<td>Left anterointricular stenosis after valve implantation</td>
<td>Wound discharge</td>
</tr>
<tr>
<td>S haemolyticus</td>
<td>367</td>
<td>Male</td>
<td>Urology</td>
<td>Prostatitis</td>
<td>Urine</td>
</tr>
<tr>
<td>S haemolyticus</td>
<td>9381</td>
<td>Female</td>
<td>Dermatology</td>
<td>Burn</td>
<td>Wound swab</td>
</tr>
<tr>
<td>S haemolyticus</td>
<td>11684</td>
<td>Female</td>
<td>Paediatrics</td>
<td>Sepsis</td>
<td>Blood</td>
</tr>
<tr>
<td>S saprophyticus</td>
<td>3876</td>
<td>Female</td>
<td>Internal medicine</td>
<td>Chronic pyelonephritis</td>
<td>Urine</td>
</tr>
<tr>
<td>S saprophyticus</td>
<td>4922</td>
<td>Male</td>
<td>Dermatology</td>
<td>Burn</td>
<td>Wound swab</td>
</tr>
<tr>
<td>S saprophyticus</td>
<td>110008 HNCMB</td>
<td></td>
<td>reference strain</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tube adherence method described by Christensen et al.16 Cultivation of each of the strains was performed in both trypticase-soy broth containing 1% glucose (TSB, Difco Laboratories Detroit, Michigan, USA) and in 1% glucose-meat broth prepared in our laboratory. Each test was repeated five times.

HYDROPHOBIC INTERACTION CHROMATOGRAPHY (HIC)

HIC was performed on octyl-sepharose gel (Pharmacia, Uppsala, Sweden). Three 1 cm columns of gel in Pasteur pipettes were equilibrated with 4-5 ml of 0-02 M sodium phosphate buffer (pH 6-8) and 0-1 M and 0-5 M ammonium sulphate solution in 0-02 M sodium phosphate buffer (pH 6-8) for each strain. A standardised suspension of bacteria (100 μl) harvested from modified Columbia Agar Base (Oxoid, Basingstoke, Hants, England) supplemented with 5% defibrinated bovine blood was applied to the gel columns.

The same suspension of bacteria was added to 3 ml buffer as a control. Immediately after adding the bacterial suspension to the gel, non-adsorbed bacteria were eluted from the gel with 3 ml of buffer. The absorbance of eluates were measured at 540 nm, and the percentage of bacterial binding to the gel was calculated. The control was considered as 0% binding; thus lower absorbance values meant positive binding.

IMPROVED SALT AGGREGATION TEST (ISAT)

This was performed by mixing one drop of standardised bacterial suspension with one drop of ammonium sulphate solution (0-2 M to 3 M) coloured with methylene-blue on white hydrophobic paper. The ISAT value was taken as the lowest molarity of ammonium sulphate at which aggregation occurred within five minutes. If aggregation occurred only at molarities of or above 1·5 M, bacteria were regarded as hydrophobic.17

The haemolytic activity of the strains was examined by growth for 24 hours on layered nutrient agar plates supplemented with defbrinated human, rabbit, horse and sheep blood, respectively.

TOXIN PRODUCTION IN VITRO

Each strain was grown for 18 hours by shaking in either brain-heart infusion broth (for lipase, esterase, and DNAase), yeast dialysate medium24 (for a-haemolysin), or Gladstone and van Heyningen27 medium (for δ-haemolysin). Then cultures were centrifuged to remove the bacteria and sodium thiomer-salate (1 in 1000 of a 1% solution) was added as a preservative to the supernatant fluids.

TOXIN ASSAYS

a-haemolysin

Serial doubling dilutions of toxin (0·2 ml) were made in saline and equal volumes of 2% (v/v) fresh rabbit erythrocyte suspension added to wells of a microtitre plate. The plate was incubated at 37°C for one hour.

Haemolysin titre was taken as the reciprocal of the highest dilution of toxin just causing 50% haemolysis of the erythrocytes.

δ-haemolysin

Serial doubling dilutions of toxin (0·2 ml) were made in saline and equal volumes of 2% (v/v) fresh human erythrocyte suspension added to wells of a microtitre plate. The plate was incubated at 37°C for one hour. The haemolysin titre was taken as the reciprocal of the highest dilution of toxin just causing 50% haemolysis of the erythrocytes.

DNAase, lipase, and esterase

Serial dilutions of toxin (0·1 ml) in saline were added to wells cut in agar containing either 1% DNA, 1% glycerol tributyrate, or 1% Tween 80 as enzyme substrate. The presence or absence of zones of clearing (lipase), precipitation (esterase), or clearing after addition of hydrochloric acid (DNAase) were taken as an indication of positive enzyme activity.

PREPARATION OF BACTERIAL SUSPENSION FOR USE IN THE INFECTION MODEL

Strains were precultured on blood agar at 37°C for 24 hours, followed by subcultivation for a further 24 hours at 37°C on modified Columbia Base Agar plates (Difco Laboratories, Detroit, Michigan, USA, or Oxoid Ltd, Basingstoke, Hants, England) containing 5% bovine blood (Phylaxia, Budapest, Hungary) and 2% sodium chloride. Bacteria were collected from the plates with sterile cotton wool swabs and suspended in a physiological dextran solution (Fluidex 40, Polfa, Warsaw, Poland) as microcarrier.28 Basic bacterial suspensions were spectrophotometrically standardised from which serial dilutions of known bacterial counts were prepared. At the same time a calibration curve was made to determine the number of colony forming units (cfu) corresponding to different bacterial densities.
Pathogenicity of Staphylococci

Table 2. Adherence and hydrophobicity of strains of different species of coagulase negative staphylococci

<table>
<thead>
<tr>
<th>Test strains</th>
<th>Adherent growth on plastic</th>
<th>0.02 M phosphate buffer</th>
<th>0.1 M ammonium sulphate</th>
<th>ISAT value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>S epidermidis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8602</td>
<td>No</td>
<td>43.5 (0.58)</td>
<td>75.5 (11.0)</td>
<td>1.45 (0.06)</td>
</tr>
<tr>
<td>8915</td>
<td>Yes</td>
<td>23.5 (3.37)</td>
<td>47.5 (1.9)</td>
<td>1.50 (0)</td>
</tr>
<tr>
<td>5905</td>
<td>No</td>
<td>25.0 (4.62)</td>
<td>56.5 (2.9)</td>
<td>1.45 (0.06)</td>
</tr>
<tr>
<td>S haemolyticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>367</td>
<td>No</td>
<td>94.7 (5.3)</td>
<td>95.5 (8.1)</td>
<td>0.50 (0)</td>
</tr>
<tr>
<td>9381</td>
<td>No</td>
<td>48.5 (6.4)</td>
<td>74.0 (0.0)</td>
<td>0.35 (0.17)</td>
</tr>
<tr>
<td>11684</td>
<td>No</td>
<td>53.0 (0)</td>
<td>95.5 (1.7)</td>
<td>1.45 (0.06)</td>
</tr>
<tr>
<td>S saprophyticus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3876</td>
<td>No</td>
<td>24.0 (1.2)</td>
<td>32.0 (5.8)</td>
<td>1.05 (0.06)</td>
</tr>
<tr>
<td>4922</td>
<td>No</td>
<td>84.5 (1.7)</td>
<td>76.3 (6.0)</td>
<td>1.50 (0)</td>
</tr>
<tr>
<td>110008</td>
<td>Yes</td>
<td>8.0 (2.3)</td>
<td>18.5 (0.6)</td>
<td>1.67 (0.26)</td>
</tr>
</tbody>
</table>

*Expressed as per cent of bacteria adsorbed on to octyl-sepharose gel relative to a suspension of bacteria in buffer.
†The lowest molarity of ammonium sulphate at which aggregation occurred.

MOUSE INFECTION MODEL

Four month old, inbred BALB/c mice were grouped according to sex and weight. The random selection of mice in this population followed a natural distribution. Four groups of male mice and four groups of female mice were challenged with graded doses of each bacterial strain calculated on the basis of body weight. Mice were injected intraperitoneally with 0.3–0.5 ml (depending on their weight) of the proper bacterial suspension warmed to body temperature. The same volume of Fluidex 40 was injected into control mice. The mice were fed freely and their behaviour was observed for 10 days after infection.

Mice dying within two days of challenge were dissected immediately; those surviving for 10 days were sacrificed and examined for changes in the peritoneum, liver, spleen and kidneys. Spleens of non-infected mice measured 17–20 mm. In infected mice, spleens measuring 21–25 mm were regarded as displaying moderate splenomegaly, and spleens above 25 mm as displaying advanced splenomegaly.

Results

ADHEREANCE AND HYDROPHOBICITY/HYDROPHILICITY

Only one of the three S epidermidis strains and one of the three S saprophyticus strains adhered well to plastic, while two of each species failed to adhere. None of the S haemolyticus strains were adherent. All three S epidermidis strains proved hydrophilic in both tests. Two of the three S haemolyticus strains were hydrophobic in both assays, while strain S haemolyticus 11684 was hydrophobic by HIC and hydrophilic by ISAT. Strain 3876 was fully hydrophilic by HIC but moderately hydrophilic by ISAT; HNCMB 110008 was hydrophilic in both tests; strain 4922 was hydrophobic in both tests. As a whole, no association was found between adherence and hydrophobicity or hydrophilicity of the strains (table 2).

TOXIN PRODUCTION

The strains differed considerably in the yield of haemolysin in culture supernatant fluids (table 3). Slight DNAase activity was shown only by S saprophyticus strain 110008, and slight lipase activity was detected in S epidermidis strain 8602; esterase was produced by S haemolyticus strain 11684, and by S saprophyticus strains 3876 and 4922 (data not shown).

PATHOGENICITY AND LETHALITY TO MICE

The same challenge dose of bacteria killed more male mice than females. All three strains of each Staphylococcus species were pathogenic for mice but there was a pronounced difference between the lethal doses of the different bacterial species: S saprophyticus proved the most virulent (LD50 = 2.7–2.9 × 105 cfu/g body weight); S haemolyticus was somewhat less virulent (LD50 = 2.9–3.8 × 105 cfu/g body weight); and the least virulent was S epidermidis (LD50 = 6–8 × 104 cfu/g body weight). These differences in lethality were significant (p < 0.0001). However, within each species the virulence of the various strains differed. For this reason results are shown as dose ranges instead of doses characterised by exact numbers.

Each coagulase negative Staphylococcus species caused visible organ damage; the most common macroscopic lesion was splenomegaly (verified by histological examination) (fig 1) in mice sacrificed on the 10th day after infection; liver, peritoneal, or kidney abscesses were also sometimes observed.

Table 3 shows that strains of S epidermidis caused splenomegaly most frequently and those of S haemolyticus rarely. By studying the prevalence of splenomegaly according to the species injected, more than half (52–4%) of all the cases of splenomegaly were found in the group infected with S epidermidis (fig 2), although mice challenged with S epidermidis made up only 79 of the 245 survivors. The different coagulase negative species, therefore, cause splenomegaly at significantly different frequencies (p < 0.001). On the other hand, the numbers of cases of splenomegaly were directly proportional to LD50 (p < 0.001) of each of the three species (data not shown).

Liver abscesses were found in 28 of the 245 surviving mice: 28% of them had been challenged with S saprophyticus, 72% with S epidermidis. No liver abscesses occurred after the injection of S haemolyticus indicating that the
development of a liver abscess may be species specific (p < 0.001). In the case of *S. epidermidis* the frequency of the appearance of liver abscesses was directly proportional to the numbers of bacteria injected (p < 0.001). There was no significant difference between male and female mice.

Bilateral kidney abscesses were found in 11 mice infected with *S. epidermidis*, amounting to 13-9% of the survivors. Kidney abscesses were 2-7 times more common in male than in female mice.

Discussion

Mice and rats have been used most frequently to study experimental coagulase negative staphylococcal infections, although Holmberg et al. demonstrated a causative role for *S. epidermidis* in bovine mastitis. Previous studies partly agree with our results. We cannot fully compare our data as a comparative study of the pathogenicity of *S. epidermidis*, *S. haemolyticus*, and *S. saprophyticus* has not been carried out before. In our experiments each of the three staphylococcal species proved pathogenic for BALB/c mice. Dextran solution was a good microcarrier for the cocci when injected intraperitoneally. According to the observations of Ichiman and Yoshida, only 13 of 300 randomly chosen freshly isolated clinical strains of *S. epidermidis* were virulent for mice. Namavar et al. found that the LD₅₀ of different biotypes of *S. epidermidis* ranged from 7.1-7.8 x 10⁵ following intracerebral challenge of newborn mice. Christensen et al. showed that mice were not infected by *S. epidermidis* without the use of foreign body implants. Baddour et al. found that with an inoculum of 1 x 10⁶ cfu endocarditis was established in all of 77 rats infected with *S. epidermidis* but in only five (12.5%) of 40 animals injected with *Staphylococcus hominis*. Jonsson et al. showed that *S. epidermidis* and *S. haemolyticus* were not pathogenic in a mouse mastitis model, even when a large dose of inoculum was used, while in the neonatal mouse weight gain test four of nine coagulase negative staphylococcus strains caused weight loss suggesting some virulence.

In our present study each of the clinical strains of *S. epidermidis*, *S. haemolyticus*, and *S. saprophyticus* has been shown to be pathogenic for mice according to the criteria of Ichiman and Yoshida. The degree of virulence is similar to that of methicillin resistant strains of *Staphylococcus aureus*. *S. saprophyticus* is the most virulent, *S. haemolyticus* somewhat less so, and *S. epidermidis* is the least virulent. All strains of the three *Staphylococcus* species are invasive in mice with an intact immune system after intraperitoneal challenge. Considerable differences were seen in mouse virulence among the strains of the same species, which was similar to the findings of Namavar et al.

Our results show the complexity of coagulase negative staphylococcal infections and indicate the present insufficiency of in vitro tests as predictors of pathogenicity of a given

Table 4 Number and percentage of normal size and enlarged spleens of mice 10 days after infection with different species of coagulate negative staphylococci

<table>
<thead>
<tr>
<th>Spleen size</th>
<th>No (%) of mice infected with:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. epidermidis</td>
</tr>
<tr>
<td>Normal (<20 mm)</td>
<td>17 (21.5)</td>
</tr>
<tr>
<td>Moderate splenomegaly (20-25 mm)</td>
<td>40 (50.6)</td>
</tr>
<tr>
<td>Advanced splenomegaly (>25 mm)</td>
<td>22 (27.8)</td>
</tr>
<tr>
<td>Spleenomegaly (total)</td>
<td>62 (78.4)</td>
</tr>
</tbody>
</table>

Figure 1 Histological appearance of splenic abscess in mouse infected with coagulate negative staphylococci (haematoxylin and eosin).

Figure 2 Incidence of splenomegaly in relation to intraperitoneal infection of mice with different species of coagulate negative staphylococci.
coagulate negative staphylococcus strain or species. The lack of correlation between in vitro adherence and hydropobicity suggests that different surface components determine these two properties. On the other hand, the presence or absence of these characters in vitro gives no information about the severity and outcome of infection, because no association was found between in vitro adherence, hydropobicity or hydrophilicity, and lethality. Toxin production in vitro by coagulate negative staphylococcus strains may reflect the severity of the infection, as one strain of S. epidermidis which elaborated the highest titres of both haemolysins (compare table 3 and fig. 2) also had the lowest LD₅₀. The role of haemolytic toxins in the pathogenesis of coagulate negative staphylococcal infections is far from clear because it is not known whether haemolsyn production occurs in vivo, and how the toxins might interact with other bacterial and host factors.¹³

Similarly, Lambe et al., in a subcutaneous abscess model initiated by implantation of catheter segments coated with each of five species of coagulate negative staphylococci, were unable to relate abscess formation to the presence of glycocalyx or the production of various toxins in vitro. All S. haemolyticus strains produced haemolsyns in vitro (table 3), suggesting that haemolsyn may contribute to the high virulence of this species. In contrast, the higher virulence of S. saprophyticus is impossible to interpret on the basis of our in vitro data. However, Beuth and coworkers¹⁸ have shown that S. saprophyticus is unique among coagulate negative staphylococci because it possesses at least three types of specific surface lectin. The presence of high amounts of these lectins on the surface of the cocci, when injected into the peritoneal cavity, may contribute to their virulence by altering host macrophage function.¹⁹

Experimental S. epidermidis infection is characterised by a low LD₅₀ and a significantly high incidence of splenomegaly in the survivors. This is the first report, as far as is known, of induced splenomegaly in the spleen as a target organ for coagulate negative staphylococci. Splenomegaly is usually caused by lymphoproliferation and may be associated with the ability of staphylococcal extracellular slime to stimulate production of immunologically competent cells, but doubts about the purity of the material used in these experiments and difficulties in distinguishing some surface components of coagulate negative staphylococci may render this mechanism open to doubt. The strains used in the present study, although shown to have variable adherence to plastic, were not examined for the presence of slime. As yet we cannot ascribe any particular property to the coagulate negative staphylococci which could be responsible for the features seen in our mouse model of infection.

The skilful technical assistance of Mrs Erzs é bet Papp-Falusi, Jolán Vargha, Katalin Rozgony-Sziráki, Mr József Bank and the late Mr László Csemere is appreciated. This work was supported by the National Scientific Research Fund of Hungary, grant No. OTKA 712 (1986–90) and OTKA 1470 (1991–94).

19 Beuth J, Ko HL, Qui F, Pulverer G. Chemiluminescence response of human polymorphonuclear leucocytes and nuclear phagoeytic cells induced by Staphylococcus saprophyticus; leptonphagocytosis versus opsonophago-
22 Wadström T, Rozgonyi F. Virulence determinants of coag-
23 Wadström T, Speziale F, Rozgonyi F, Ljung A, Maex I, Rydén C. Interactions of coagulate-negative staphylo-
27 Gladstone GP, van Heyningen WE. Staphylococcal leuco-
28 Rozgonyi F, Kovács L, Vácz L. Genotypic stability of methicillin resistance in Staphylococcus aureus after per-
sistence in mice. In: Mitsuhashi Y, Kerenyi V, Antal M,

