Acute hepatic and renal failure caused by *Pneumocystis carinii* in patients with AIDS

R Boldorini, S Guzzetti, L Meroni, T Quirino, S Cristina, G Monga

**Abstract**
Clinical and pathological findings are described in two AIDS patients with *Pneumocystis carinii* infection who received prophylactic treatment with nebulised pentamidine and developed unusual hepatic and renal failure. Histological examination showed clumps of *P carinii* massively obstructing hepatic sinuses and portal vessels in the first patient, and merular and intertubular capillaries in the second. These findings could explain the unusual clinical features, characterised by acute hepatic and renal failure.

Keywords: AIDS, *Pneumocystis carinii*, hepatic failure, renal failure.

Disseminated pneumocystosis in patients with acquired immunodeficiency syndrome (AIDS) is reported with increasing frequency, but it appears still to be rare despite the high frequency of *Pneumocystis carinii* pneumonia. Extrapulmonary localisation of pneumocystosis has been reported in necropsy series and in single case reports, with the involvement of spleen, lymph nodes, bone marrow, liver, thyroid, gut, adrenal gland, skin, and brain.

Extrapulmonary pneumocystosis can give rise to unusual clinical presentation, including thyroiditis, oitis media with mastoiditis, cutaneous lesions, "acute abdomen", hepatitis and chorioiditis, and lymph node enlargement.

To our knowledge, there are no well documented reports of renal failure due to *P carinii*. Only a few cases of hepatic failure have been described on the basis of the clinical findings, but without morphological evidence of the type and severity of liver damage.

We describe the clinical and pathological features of two cases of disseminated pneumocystosis in AIDS patients who were given prophylactic treatment with nebulised pentamidine and developed hepatic and renal failure because of severe liver and kidney damage.

**Methods**
Necropsy examinations were performed 12 hours (patient 1) and 17 hours (patient 2) after death. A total of 124 organs were examined using light microscopy.
after death. Tissues were fixed in formalin, embedded in paraffin, and stained with haematoxylin and eosin, periodic acid-Schiff, Grocott-Gomori, and Giemsa. Immunohistochemistry was performed on paraffin embedded tissues with the monoclonal antibody 3F6 against the 82 kDa component of the *P carinii* cyst wall (Dakopatts, dilution 1 in 40).

**Case reports**

**PATIENT 1**

A 28 year old female drug addict with AIDS was admitted to hospital in July 1989 because of cough and dyspnoea. Pneumocystis pneumonia was diagnosed by bronchoalveolar lavage and treated with a course of trimethoprim-sulphamethoxazole which produced clinical and radiological resolution. After recovery, prophylaxis with nebulised pentamidine was begun. In August 1991 she was again admitted to hospital, with a clinical diagnosis of severe hepatic failure, ascites, lower limb oedema, and splenomegaly. Laboratory data included the following abnormal values: alanine aminotransferase 170 IU/l, γ-glutamyl aminotransferase (γ-GT) 174 IU/l, alkaline phosphatase 1439 IU/l, lactate dehydrogenase 1158 IU/l, proteins 4 g/100 ml, albumin 1 g/100 ml. The CD4+ cell count was 6 cells/μl, CD8+ 129 cells/μl, with a T-helper/T-suppressor cell ratio of 0.05. A chest x ray revealed bilateral pulmonary interstitial infiltrates. Paracentesis was immediately performed to resolve the abdominal symptoms. The patient died 24 hours later, before beginning specific treatment for hepatic failure.

**PATIENT 2**

A 34 year old man with AIDS was admitted to hospital in September 1992 with a four month history of persistent fever and weight loss. He had been on primary prophylaxis with nebulised pentamidine since 1991. Laboratory data on admission were: haemoglobin 7.4 g/100 ml; white blood count 2200/mm³; platelet count 194 000/mm³; alkaline phosphatase 0-417 IU/l; γ-GT 187 IU/l; lactate dehydrogenase 732 IU/l. CD4+ cell count was 3 cells/ml, CD8+ 40 cells/μl, with a T-helper/T-suppressor cell ratio of 0.01. A chest x ray showed bilateral pulmonary interstitial infiltrates. Blood cultures revealed the presence of *Mycobacterium avium* infection. Specific antibiotic therapy did not produce complete remission of the symptoms. Abdominal ultrasonography revealed many nodules in the liver, spleen, and kidney. A bone marrow biopsy disclosed many forms of *P carinii* in the small vessels. The patient was therefore given therapy with intravenous pentamidine (200 mg/day). Two days later, renal failure occurred suddenly, with increasing azotaemia (plasma urea increasing from 5.0 to 21.6 mmol/l) and creatininemia (plasma creatinine increasing from 133 to 840 μmol/l). The patient died 48 hours later.

**Pathological findings**

**PATIENT 1**

The lungs (combined weight: 1500 g) were red-grey and diffusely indurated. The pleura contained some miliary nodules. Forms of *P carinii* were observed in the alveoli and septa.
and diffusely in lymphatics and blood vessels. Granulomas and calcifications, some immunohistochemically positive for pneumocystis, were present. Extensive alveolar and septal necrosis replaced by confluent masses of foamy material containing aggregates of pneumocystis were found.

Liver and spleen were enlarged (2000 and 1300 g); tan nodules of various sizes (from a few millimetres to 2–3 cm), occasionally calcified, were observed in the spleen. The liver was red-grey and small, scattered white nodules were present on the cut surface. Histological examination revealed portal vessels and sinuses massively dilated and filled by pneumocystis cysts (fig 1) which often appeared calcified. On occasion, small necrotic areas were also found in the lobuli. Portal and lobular inflammation was scarce. Occasional pneumocystis emboli were found in the vessels of the adrenal glands, lymph nodes, lamina propria, and submucosa of gut, bone marrow, kidney, and meninges.

PATIENT 2

The lungs were enlarged (combined weight 2030 g), with a dry, reddish-grey cut surface and with little oedema of the lower lobes. Pneumocystis forms were found diffusely in septal, peribronchioral, and bronchial vessels, but only occasionally in the alveolar spaces. Degenerative forms of pneumocystis, with calcification and necrosis, were seen extensively. Liver and spleen were enlarged (1900 and 650 g), showing many yellowish-white nodules containing caseous-like material when cut. Scattered pneumocystis emboli were found in the hepatic portal vessels and sinuses. The spleen had a large amount of pneumocystis replacing the parenchyma and a few granulomas with macrophages containing Mycobacterium avium-intracellulare. Nodules were also seen in the pancreas, heart, adrenal glands, and thyroid. In all these organs, many pneumocystis cysts embolised small vessels, often with local infarction. The kidney (combined weight 420 g) was the organ most involved. Miliary nodules were diffusely distributed throughout the surfaces of both kidneys, especially on the cortex. Almost all the glomeruli showed capillary lumens widened and filled with pneumocystis (fig 2); glomerular cellularity was usual and inflammatory cell were absent. In addition, pneumocystis cysts were found extensively in the intertubular capillaries and in the venules. Large parenchymal areas had ischaemic necrosis and were filled with aggregates of pneumocystis cysts.

Discussion

Even in patients with AIDS, P carinii is rarely suspected to be the causative agent responsible for infection outside the lungs, probably because extrapulmonary pneumocystosis is frequently asymptomatic and its occurrence is considered unlikely. Patient 1 developed severe ascites and hepatic failure. Although she had had a previous pneumocystis pneumonia infection two years before admission, extrapulmonary localisation of pneumocystis was not suspected clinically. Matthews et al described three cases of severe ascites and hepatic failure caused by pneumocystis. However, in these cases the physicians were alerted to the possibility of extrapulmonary infection by the presence of a typical choroidal lesion suggestive of extrapulmonary localisation of pneumocystis, which was absent in our patient.

The liver involvement is common in disseminated pneumocystosis, but only a few reports describe hepatic disease. Acute hepatic failure is occasionally reported as acute hepatitis, only on the grounds of clinical data. The extensive liver damage in our patient supplies the morphological evidence of the hepatic failure. A severe deficit of protein (especially of albumin) was present in our patient. The mechanism of hypoalbuminaemia and hepatic dysfunction caused by massive involvement of the liver by pneumocystis is unknown. Matthews et al did not observe any external loss of albumin in their three cases, and suggested that the hypoalbuminaemia might be caused by increased turnover associated with a decrease of albumin synthesis. Our case provides some evidence that the hypoalbuminaemia might be related to direct liver cell damage evolving focally in tissue necrosis, and that ascites could be due to both hypoalbuminaemia and diffuse mechanical obstruction of the sinuses by pneumocystis emboli.

Renal involvement was the prevailing feature both clinically and pathologically in patient 2. Renal involvement with pneumocystis is not particularly rare in disseminated pneumocystosis, especially in necropsy data, but to our knowledge this is the first clinical and necropsy report strongly suggesting that P carinii was the cause of acute renal failure. Indeed, pneumocystis aggregates were seen diffusely embolising glomerular capillaries and cortical and medullary vessels, with extensive areas of necrosis.

The reasons for dissemination of pneumocystis infection are still unknown. The usual confinement of the infection to pulmonary alveoli may indicate that local factors could be particularly beneficial for the growth of the organism, but the recently reported cases of extrapulmonary localisation of pneumocystis confirm that the organism is able to survive in both aerobic and anaerobic environments. A possible explanation of the increased frequency of disseminated pneumocystosis is the existence of different P carinii strains (that is, selected by treatment). Another important mechanism in disseminated pneumocystosis could be the failure of nebulised pentamidine to control the pulmonary infection and the low systemic levels of pentamidine. In fact, only rare cases of disseminated pneumocystosis were reported before the introduction of nebulised pentamidine and both our patients received such treatment.

In conclusion, our data provide further evidence that P carinii infection may be responsible for the unfavourable outcome in AIDS patients, not only because of pulmonary damage, but also because of massive localisation at other
sites. Clinicians must be aware of this possibility, which should be suspected in AIDS patients with unusual clinical findings.