Correspondence

p53 in human papillomavirus associated anogenital cancers

It was interesting to read the paper by Ogunbiyi et al.1 regarding the investigation of p53 protein expression in anal squamous neoplasia in association with human papillomavirus (HPV) 16. A similar study was recently undertaken2 addressing the relation between p53 protein expression and HPV infection in cervical neoplasia. Comparison of these two studies reveals several interesting observations with regard to the role of p53 in HPV positive cancers.

Both studies revealed a strong association between the detection of HPV sequences and p53 antigen expression in invasive cancers. p53 immunocytochemistry was positive in 69-9% of HPV 16 positive invasive anal cancers1 and in 86% of HPV 16/18 positive invasive cervical cancers.2

Both studies showed uniform positive reactions with the panels of antibodies for p53 antigen detection: DO-1, CK-1, DO-7 and PAb 240, DO-17. However, while p53 protein expression involved almost all tumour cells in the anal cancer group, only focal isolated cells or groups of cells expressed p53 protein in the cervical cancer study. Nevertheless, the immunocytochemical expression of p53 in both HPV positive anal and cervical cancers is inconsistent with the hypothesis that wild-type p53 cell regulating functions are annihilated in HPV positive cancers as a consequence of complexing with HPV E6.13 As p53 regulates entry into the S phase of the cell cycle, disruption of its function by complexing with E6 and subsequent degradation via the ubiquitin system14 has been the proposed form of inactivation of p53 in HPV positive cancers.1 Hence, the dual detection and co-localisation of p53 antigen and integrated HPV 16 DNA, albeit in isolated cells, in cervical cancers questions this hypothesis.2 Alternatively, the reliability of p53 immunocytochemistry may be in doubt.

These findings emphasise the need for further studies elucidating the role of p53 in HPV positive cancers. These studies should combine p53 protein localisation by immunocytochemistry and semiquantitative western blot analysis with p53 gene sequencing in HPV positive and negative anogenital cancers.

K COOPER
Department of Anatomical Pathology, South African Institute for Medical Research, P.O. Box 1038, Johannesburg 2000, South Africa

Paget’s disease of the breast

O’Sullivan et al.3 recently reported a case of Paget’s disease of the nipple without associated carcinoma. We have previously studied 11 cases of this disease in women.7 To avoid the unusual flattening of mammary specimens, they were placed in a net during formalin fixation. Sections were cut parallel to the thoracic wall and not perpendicular to it. Using this method, all 11 of the 12 ducts were found under the nipple compared with the usual eight to 12.

We found a consistent association between Paget’s disease and intraductal eosinophilic cell carcinoma. Three patients had an invasive underlying tumour: in one case it was not anatomically related to the ductal carcinoma, which occupied nine of the 17 ducts found in the nipple; in the other two patients the invasive and ductal tumours were in contact, but many of the ducts, some of which were opposite the tumour, also contained carcinoma. However, according to the traditional view of Paget’s disease, as the ducts divide dichotomously, only one or a very small number of ducts should have contained carcinoma.

There was no invasive tumour in the other eight cases. The nipple or areola contained a mass of tumour cells in each case. In one patient, an invasive duct carcinoma eight to 10 mm in diameter, and not accompanied by comedocarcinoma, sometimes extending deep into the breast.

Paget’s cells are cytologically different from the duct carcinoma cells. Moreover, using a mathematical model, we calculated that it would take 115 days for a Paget’s cell to move 1 cm in the epidermis which exceeds the life of a cancer cell. Over this period the epidermis would be renewed seven times and Paget’s cells would be exfoliated. This suggests that Paget’s cells arise in the basal layer of the epidermis. The synchronous ductal carcinoma probably occurs at the epidermal junction of the ducts.

Specimens of mammary (and extramammary) Paget’s disease should be studied with sections cut parallel to the skin, providing a better view of the ductal lesions.

Detection of integrated human papillomavirus 16 DNA in squamous cell carcinoma of the cervix

It was both gratifying and interesting to read the paper by Kristiansen.1 Gratifying, because an independent laboratory has now conclusively confirmed the previous finding2 of the punctuated dot negative signal in situ hybridisation (NISH) type II (using Southern blot). Kristiansen and colleagues showed a 100% concordance between NISH signal patterns (representing episomal and integrated virus) and the gold standard for determining the physical state of HPV DNA, a two-dimensional gel electrophoresis; Southern blot, and in situ hybridisation demonstrated integrated HPV 16 DNA in only 83% of squamous cell carcinomas of the cervix.

This raises interesting questions about the sensitivity of Southern blot analysis in determining the physical state of HPV DNA, as junction fragments essential for determining integrated virus may be masked by episomal virus. As several previous studies (using Southern blot analysis) have not demonstrated integrated virus in all HPV positive cervical cancers, a role for viral integration in cervical carcinogenesis has somewhat waned. The findings of Kristiansen and coworkers certainly strengthen the role of HPV DNA integration in cervical neoplasia and suggests that this physical state may still be crucial. It also clearly questions the methodology that should be used to determine the integrated physical state of HPV DNA in cervical cancer.

K COOPER
Anatomical Pathology, School of Pathology, SAIMR/University of Witwatersrand, P.O. Box 1038, Johannesburg 2000, South Africa


Book review


If you were asked to guess to whom the credit for this book is largely due, you probably would not spring to say that it was the late Sammy Davis Jr. Yet the manuscript is the culmination of a process initially begun by an ad hoc International Hepatology Informatics Group who met under the auspices of the National/International Liver
Institute in Newark, USA, which had been founded by the celebrated actor/singer/comedian. The intention was to revise and update the "brown book" Standardization of Nomenclature, Diagnostic Criteria and Diagnostic Methodology for Diseases of the Liver and Biliary Tract, published in 1976. Work on the second version started in 1986 and subsequently involved some 114 international experts whose names are listed: a truly formidable assembly. Each disease is characterised as to its definition, clinical and laboratory criteria, radiology, histological appearances, aetiology, and prognosis. The first six chapters describe physical examination, laboratory investigation and currently available tests, imaging techniques and their usefulness, morphological findings that may be encountered, show tabulation of aetiologies, and discuss prognosis and decision analysis. Chapters 7 to 15 deal with specific disease groupings. Some of these are based on clinical presentation—for example, hepatitis or cholestasis, others on pathology such as fatty liver, vascular disorders or tumours, or a mixture of both. Consequently, many entities turn up in more than one chapter or are oddly placed like passive congestion, sickle cell disease, and cholangiocarcinoma under cholestasis. However, cross referencing is abundant and the index lists all sites of entry. The out-dated terminology of chronic persistent and chronic aggressive hepatitis is no longer used and chronic liver diseases are dealt with according to their aetiology. Under congenital and perinatal disorders, the concept of ductal plate maldevelopment, which links a group of cystic/biliary/fibrotic conditions together, is not fully elucidated and mesenchymal haematomata (sic) appears in the chapter on tumours. Spelling mistakes are not infrequent and should have been corrected as in Tables 4-1, 4-2, and 5-1. Other, minor criticisms concern understandings like "hepatocellular carcinoma can develop in HBV carriers" or lack of detail—for example, "antimitochondrial antibodies are present in 93% of patients" (with primary biliary cirrhosis) and tabulation of drugs commonly associated with particular types of liver injury would have been useful. All in all, the book may have suffered from too much advice from too many contributors and this has resulted in some lack of organisation. However, all main aspects of liver and biliary diseases (including those of the gall bladder) have been well covered in a succinct and usable form, and the book will serve as a standard for years to come. It is recommended to hepatologists whatever their specialty.

P P ANTHONY

If you wish to order or require further information regarding the titles reviewed here, please write to or telephone the BMJ Bookshop, PO Box 295, London WC1H 9AL, tel: 0207 928 6244. Fax: 0171 6622. Books are supplied post free in the UK and for British Forces Posted Overseas addresses. Overseas customers should add 15% for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank or by credit card (Mastercard, Visa, or American Express) quoting card number, expiry date, and full name. (The price and availability are occasionally subject to revision by the Publishers.)


For further information, please contact: Dr Grace McKeel or Mrs Jennifer Walker, Department of Cytopathology, Royal Surrey County Hospital, Epsom Road, Guildford, Surrey GU2 5XX. (tel: 01483 571122 ext. 4374/4373; fax: 01483 453615).