Viral gastroenteritis: small round structured viruses, caliciviruses and astroviruses. Part II. The epidemiological perspective

E Owen Caul

Introduction
Part I of this review, published in the previous issue of this journal, presented the clinical and diagnostic perspective of these viruses. The epidemiology of each virus is now analysed in detail.

Small round structured viruses (SRSV)
Following the original description of Norwalk virus in the USA, this group of viruses has become established as the most important cause of outbreaks of epidemic non-bacterial gastroenteritis worldwide. In particular, the diversity of settings associated with these economically important viruses is amply demonstrated by the early American studies. Thus, Norwalk virus was responsible for a community-wide outbreak in Ohio, while the Hawaii and Montgomery County agents were associated with small family outbreaks. The Snow mountain agent caused an epidemic at a holiday camp in Colorado, while on this side of the Atlantic the Taunton agent was responsible for the considerable disruption which arose in an orthopaedic and geriatric ward in two hospitals in southern England. In subsequent studies of non-bacterial gastroenteritis in many parts of the world the potential that SRSVs have for causing epidemic gastroenteritis in semi-closed or community-wide populations has been well documented. Outbreaks have been recorded in family settings, health care institutions, holiday and travel settings, cruise ships, homes for the elderly and in schools or colleges. The comprehensive sero-epidemiological studies carried out in the USA, in conjunction with the direct detection of SRSVs by electron microscopy, particularly in the UK and Japan as well as elsewhere in the world, reinforces the importance of these viruses in community-wide outbreaks. Such outbreaks often have significant economic implications. The UK initiatives directed towards the surveillance and diagnosis by electron microscopy of outbreaks of non-bacterial gastroenteritis have recently shown that SRSVs are a more common cause of outbreaks than Salmonella. In addition, the UK data demonstrate an increasing prevalence of SRSVs in recent years (fig 1) with the suggestion of a winter seasonality (fig 2) and also show that all age groups are affected (fig 3). Furthermore, epidemiological studies have shown that outbreaks of SRSVs commonly occur in children and adults but less often in neonates or very young children. All of these epidemiological observations contrast with those of the classic caliciviruses and astroviruses which are rarely implicated in outbreaks of gastroenteritis in adults.

It is now apparent that SRSVs commonly circulate in the community and are often spread from person to person. This observation in conjunction with the high infectivity of SRSVs (10–100 virus particles) gives rise to a significant potential for point source outbreaks and this is now recognised. In many explosive outbreaks a vehicle for transmission, other than the person to person route, has been identified. Thus contaminated water supplies in America in the form of municipal water, semi-public water, drinking water on cruise ships, recreational swimming water (pool or lake) as well as commercially produced ice-cubes have been incriminated in SRSV outbreaks. Additionally, food-borne outbreaks have also been well recognised where food specific attack rates have produced epidemiological evidence that has identified contaminated salads, bakery products, cold foods, sandwiches, cooked meat, and fresh fruit as vehicles for
In some of these outbreaks the source of the contamination has implicated a symptomatic or recently symptomatic food handler. It is apparent that any food can transmit SRSV if it is handled after cooking or otherwise by an infected food handler. The important aspect of food-borne transmission is that the secondary attack rate is often high (>50%) which in turn amplifies the initial point source outbreak.

A well established and major source of food borne gastroenteritis arises from the consumption of contaminated shellfish. The shellfish most commonly reported are the bivalve molluscs (oysters, cockles and mussels) which become infected from the raw sewage that contaminates shellfish beds. SRSVs are an important cause of food borne non-bacterial gastroenteritis in the UK, arising from eating shellfish and are commonly under-reported. Small and large outbreaks have also been reported in the USA, Japan and Australia where in the latter case more than 2000 people were affected. A recent study using the reverse transcription polymerase chain reaction (RT-PCR) and genome sequencing identified a symptomatic fisherman as the source of contamination of an oyster bed in the USA, arising from the fisherman defecating directly into the water adjacent to the oyster bed. The contamination of shellfish worldwide by sewage presents a major challenge to the food industry and others if reductions in transmission are to be achieved.

Initial studies in the UK suggested that 20–25% of known SRSV outbreaks were food associated, whilst 67% of 38 SRSV outbreaks in Japan were food related. In these studies shellfish were identified as a major source of the outbreaks. State-wide studies in America, using the Kaplan criteria for identifying SRSV outbreaks, implicated food-borne transmission in 39% of outbreaks.

Classic caliciviruses

The first definitive report of an association between a human enteric calicivirus and viral diarrhoea came from studies carried out in Glasgow. Investigations on the causes of gastroenteritis in children revealed the presence of classic caliciviruses in both symptomatic and asymptomatic children. Subsequently, most of our data on the epidemiology of caliciviruses were derived from electron microscopic observations and limited seroprevalence studies.

Studies of sporadic cases of childhood diarrhoea have documented excretion rates from 0.9% to 6.6% suggesting that, in common with astroviruses, they are a minor cause of clinically important disease. Subclinical infection in neonates is well documented which contrasts with the symptomatic infection recognised in older children. Analysis of the national surveillance data derived from electron microscopists in the UK between 1985 and 1987 showed that caliciviruses accounted for 0.9% of the total number of positive identifications of diarrhoea viruses reported. The majority of these calicivirus reports (>90%) were documented in children under five years of age. Similar analysis of more recent national data in the UK (1990–1994) shows that caliciviruses accounted for 0.8% of all positive diarrhoea virus reports, which is remarkably similar to the previous report. Further analysis of small round diarrhoea viruses alone (SRSV, calicivirus and astrovirus) show that caliciviruses account for 8.8% of these reported viruses (fig 4). It is concluded that caliciviruses are a minor cause of clinically significant disease in the UK paediatric population and infected children are rarely admitted to hospital for medical intervention.

Although sporadic cases of human enteric caliciviruses infections are well documented, community infections and hospital
outbreaks have also been recognised occasionally. The first community outbreak to be reported was in an infant and junior school in North London.35 Caliciviruses were conclusively shown to be the causative agent and the outbreak resembled winter vomiting disease, although spread to other children in the other classes in the school and to secondary home contacts was negligible. These epidemiological observations contrast with the high secondary attack rate documented for classic winter vomiting disease caused by SRSVs. Outbreaks have been documented subsequently in Japan, Australia, England, Canada, and Scandinavia.36-44 Some of these outbreaks occurred not only in children but also amongst elderly patients in nursing homes.38 39 42 where the attack rate in some outbreaks ranged from 50 to 70%. Although outbreaks in the elderly have been reported, they are unusual and may occur because of a waning immunity, as documented for rotaviruses and respiratory syncytial virus. It is apparent from the British studies that caliciviruses are primarily a paediatric infection and are endemic in the community (fig 5). The reported number of cases is too small to draw any definitive conclusions on seasonality (fig 6). Further evidence that caliciviruses are primarily a paediatric infection is demonstrated by seroprevalence studies40 42 45 49 showing that 90% of children and adults have acquired specific antibody and this high seroprevalence probably explains why so few outbreaks are recognised in adults. Convincing evidence that caliciviruses can be spread by the food-borne route is not yet available, although such occurrences should occur particularly through the consumption of contaminated shell-fish. The lack of documented evidence of shell-fish associated gastroenteritis caused by caliciviruses provides further evidence for the hypothesis that infection in childhood gives rise to life-long immunity.

Astroviruses

In common with other diarrhoea viruses most of our current knowledge on the epidemiology of astroviruses is based on their detection by electron microscopy. Limited seroprevalence studies complement these data and indicate that this group of viruses is primarily causal in paediatric diarrhoea, analogous to that documented for caliciviruses. Astroviruses have been reported from all five continents46 where a significant association with childhood diarrhoea has been noted.47 48 49

Early studies in Glasgow documented that 80% of babies excreting the virus were symptomatic but a significant number of children (12%) had no clinical evidence of gastroenteritis.50 With the recognition of astroviruses by electron microscopy came many reports documenting nosocomial spread, and outbreaks in infants and young children have been described in nurseries and paediatric wards.40 50-53 56 57 A particularly large outbreak in children has been documented in Japan, where more than 50% of the children were symptomatic.51 In an outbreak in a children's ward in the UK nursing staff became infected and symptomatic, indicating that susceptibility to adult life does occur.52 Asymptomatic excretion of astroviruses has been variously reported from 5% to 20% in neonates and young children and this represents a significant source of spread in semi-closed communities such as hospitals or nurseries.

Comprehensive longitudinal studies on astrovirus prevalence in the community have been reported rarely. Initial electron microscopic analysis of the UK national surveillance data between 1985 and 1987 showed that astroviruses were endemic within the community with distinct peaks in the winter.53 In these studies a striking age related prevalence was noted. It was also clear that the majority of these symptomatic infections occurred in children under the age of five years. Other longitudinal studies in London reported that 2.8% of symptomatic children under the age of six excreted astroviruses but none of the children in the study between the ages of six and 12 years excreted virus.54 Analysis of more recent UK data shows that astroviruses account for 1–2% of all positive reports of diarrhoea viruses and if only the small round diarrhoea viruses are considered then they account for 26.4% (fig 4). This national data confirms that astroviruses are, like caliciviruses, only a minor cause of viral gastroenteritis in the UK and emphasise the age related (fig 7) and seasonal distribution (fig 8).

Although most astrovirus infections occur in paediatric populations, sporadic cases and outbreaks have been reported occasionally in adults.46 55 59 60 An outbreak occurred in a home for the elderly in Marin County California, where 51% of the residents developed gastroenteritis.61 Also an unusually large outbreak has been reported by Japanese workers which affected both students and teachers.62 Sporadic cases in adults have also been recognised but these make only a small contribution to the overall prevalence, at least in the UK. This is further substantiated by limited human volunteer studies in adults where symptomatic infection was uncommon and pre-existing astrovirus antibodies seemed to be protective.63
occurred four days later. SRSVs were identified as the cause of the first episode of gastroenteritis, while astroviruses were detected in stool samples collected at the time of the second episode. The identification of SRSVs and astroviruses is compatible with the known incubation periods of these two distinct families of viruses. These sero-prevalence studies have shown that 64% of three to four year olds have acquired specific astrovirus antibody and this rises to 87% in five to 10 year olds. The sero-epidemiology of astroviruses complements our data on the prevalence of astroviruses detected by electron microscopy and confirms that infection occurs in early childhood. The high level of antibody acquisition in conjunction with the relatively small number of cases reported suggest that a significant number of infections are either subclinical or so mild that medical intervention is not sought by parents. This is analogous to the situation observed with calicivirus infections and contrasts sharply with the epidemiology and explosive outbreaks that commonly occur with SRSV infections in children and adults.

Antigenic variations
Antigenic variation amongst SRSVs has been reported by immune electron microscopy (IEM) using human convalescent serum to complex intact virions through capsid epitope reactivity. To date, four SRSV antigenic types have been identified in the UK and six in the USA. Serotyping with human serum has been useful but there are still important interpretative difficulties. Similar investigations by Japanese workers have identified nine serotypes, although this may be an overestimate because of cross reactions within serotypes. The available information on antigenic variation amongst SRSVs is hampered by the use of human reagents and definitive data will depend on the production of specific hyperimmune serum or monoclonal antibodies. This is now feasible as a result of the molecular characterisation of SRSVs and the production of recombinant viral capsids in appropriate expression systems.

Similar problems in identifying antigenic variation amongst classic caliciviruses are also recognised. To date, caliciviruses with a classic morphology have been grouped into four distinct antigenic types by IEM and a common antigenic epitope detectable by radioimmunoassay has been reported.

In contrast with the above, the ability to propagate astroviruses in cell culture and the production of hyperimmune antisera and monoclonal antibodies have permitted the definitive identification of seven antigenic types by IEM and immunofluorescence. The recent development of a monoclonal antibody based enzyme immunoassay by Herrmann et al has confirmed the previously reported antigenic variation amongst astroviruses.

Conclusions
The routine surveillance of non-bacterial gastroenteritis in the UK by electron micros-

![Figure 6: Seasonal distribution of calicivirus in England and Wales 1990–1995. Data for 1993–1995 are provisional.](image)

![Figure 7: Age distribution of astrovirus in England and Wales. Cumulative totals 1990–1995.](image)

![Figure 8: Seasonal distribution of astrovirus in England and Wales 1990–1995. Data for 1993–1995 are provisional.](image)
Viral gastroenteritis

My grateful thanks to the Communicable Disease Surveillance Centre (CDS), Colindale, London, for allowing me to access the raw epidemiological data used in the compilation of the figures.

