Diagnosis of lymphoma in paraffin wax sections by nested PCR and immunohistochemistry

Y Kitamura, E Namba, S Inui, T Tanigawa, K Ichihara

Abstract

Aims—To investigate whether nested polymerase chain reaction (PCR) and immunohistochemistry can be used to diagnose malignant lymphoma.

Methods—Paraffin wax embedded tissue sections from 31 patients with malignant lymphoma were analysed by nested PCR and immunohistochemistry using standard protocols.

Results—Nested PCR amplification of 1 pg DNA confirmed monoclonality in B cell lymphoma; PCR amplification of 10 pg DNA confirmed monoclonality in T cell lymphoma. Twenty-seven (87%) samples were diagnosed as malignant lymphoma by nested PCR, and 24 (77%) by immunohistochemistry. Seven samples were diagnosed as malignant lymphoma by nested PCR, but not by immunohistochemistry, whereas the use of both procedures gave a diagnosis of malignant lymphoma in all 31 samples.

Conclusions—A combination of immunohistochemistry and nested PCR can be used to diagnose malignant lymphoma in routine paraffin wax embedded sections.

METHODS

Thirty-one paraffin wax embedded samples of non-Hodgkin’s lymphoma from 15 men and 16 women (age range 29–86 years) were studied. Nineteen specimens were biopsy samples, five were obtained at surgery and seven at necropsy. The B cell lines, Nalm 6 and CESS, were used as B cell positive controls. The T cell lines, CCRF-CEM and Mol-t-4, were used as T cell positive controls. Negative controls consisted of lymphocytes from the peripheral blood of healthy volunteers and paraffin wax sections of normal lymph nodes.

All samples were examined initially by staining with haematoxylin and eosin. Serial sections were immunostained with a panel of antibodies including MB1 (CD45R), L26 (CD20), MT1 (CD43), UCHL1 (CD45R0), and polyclonal antibodies directed against κ and λ immunoglobulin light chains.

DNA was extracted from paraffin wax sections, 10 μm thick, and purified as described previously. As the amount of purified DNA from paraffin wax embedded tissue was too low to detect by light absorption at an optical density of 260 nm, the β globin gene was amplified as a control for PCR.

PRIMER DESIGN

Oligonucleotide primers for the immunoglobulin heavy chain (IgH) and TCRγ chain genes were constructed on a DNA synthesiser (Applied Biosystems Model 392 Synthesiser, Foster, California, USA). The outer and inner pairs of primers were designed to amplify the CDRIII and CDRII regions of IgH. Primers for TCRγ were designed in the same manner. The sequences for IgH,11–14 TCRγ,15–17 and these primers18–23 were as published. Primers used for IgH PCR were: F3v (outer): 5′-GAC(A/T)C(A/G)GC(G/C)(G/A)TGTAT(T/C)T(T/A)CTG-3′; F3w (inner): 5′-ACA-CGGC(C/T)(G/C)TGATTACGTG-3′; F2v (outer): 5′-TGG(A/G)TCG(A/C)CA(G/C) C(T/C)(T/C)CTG-3′; F2w (inner): 5′-GTCCC-TGAGGCC(C/T)(C/T)CCGG(A/G)AA(A/G) (A/G)GTTCTGGAG-3′; BJ (outer): 5′-CT-TACCCCTAGAAGCGTGTA-3′; and BJ (inner): 5′-TGCAACAGGGT(T/C/G/A)CC-

The diagnosis of malignant lymphoma currently depends on histological examination of paraffin wax embedded tissue samples. However, it is difficult to distinguish malignant from benign disorders in lymph nodes and other lymphoid tissues. Also, the differential diagnosis between lymphomas of B and T cell origin is important clinically as the prognosis of patients with T cell lymphoma is poorer than that of those with B cell lymphoma. Gene rearrangement is an important diagnostic marker of malignant lymphoma.1 Rearrangements of the immunoglobulin and T cell receptor (TCR) genes are valuable markers for B1 and T cell lymphoma, respectively. Therefore, investigation of gene rearrangement may facilitate the routine diagnosis of malignant lymphoma, particularly when used in combination with immunohistochemistry.

The most common means of investigating gene rearrangements is Southern blotting, which requires large quantities of fresh tissue, special equipment and is time consuming. Whereas a large amount of fresh tissue is sometimes difficult to obtain, paraffin wax embedded material is readily available.

Given these considerations, polymerase chain reaction (PCR) is particularly useful for investigating gene rearrangements in a clinical setting. We used nested PCR in this study as it permits short term, sensitive analysis of small amounts of tissue.

Second Department of Pathology, Tottori University Faculty of Medicine, Nishimachi 86, Yonago 683, Japan Y Kitamura K Ichihara

Division of Child Neurology, Institute of Neurological Science E Namba

Department of Immunology S Inui

Department of Bacteriology T Tanigawa

Correspondence to: Dr Y Kitamura, Second Department of Pathology, Tottori University Faculty of Medicine, Nishimachi 86, Yonago 683, Japan.

Accepted for publication 21 November 1995
Figure 1 A comparison of sensitivity between PCR and nested PCR. IgH gene rearrangements were detected in 1 ng DNA by PCR, but in 1 pg DNA by nested PCR. Similarly, TCR\textsubscript{y} gene rearrangements were detected in 100 ng DNA by PCR, but in 10 pg DNA by nested PCR.

TTGGCCCCAG-3'. Primers used for TCR\textsubscript{y} PCR were: Tv (outer): 5'-GCTTCTAGCGTTCTGTCTC-3'; Tv (inner): 5'-ACTACTAGTGAAGCTTCTACATCCACTGTTACCT-3'; Tj (outer): 5'-GGATCCAACAGTTGTGTTCCAC-3'; and Tj (inner): 5'-CGTCGACAACAGTTGTGTTCCAC-3'.

PCR conditions

PCR was essentially performed as described by Saiki et al.5,6 The reaction mixture (25 \mu l) contained 50 pmol of each primer, 1 mM of dNTPs, 1 x Taq buffer, 10% dimethyl sulphoxide, Taq polymerase, and a DNA template. Each reaction mixture was covered with 50 \mu l light mineral oil. One PCR cycle consisted of denaturation for one minute at 94°C, annealing for two minutes at 60°C and extension for two minutes at 72°C. The first stage of PCR amplification consisted of 30 cycles with the outer pair of primers and the second stage of 30 cycles with the inner pair of primers and 1/1000 of the PCR product generated in the first stage.

The PCR products were visualised by means of electrophoresis on 3% agarose gels stained with ethidium bromide. Puc19/HaeIII was used as a size marker.

Subcloning and non-radioisotopic sequencing of the PCR products

The PCR products were subcloned into the pGEM T-vector. Briefly, PCR products were extracted from a low melting point agarose gel, ligated to the pGEM T-vector, and transformed into competent cells, which were then incubated in LB agar plates containing X-Gal and IPTG (isopropyl-\(\beta\)-D-galactoside). White colonies were selected and cultured at 37°C for 16 hours, after which the plasmid was extracted.

The PCR products were sequenced by means of dideoxy-mediated chain-termination using a biotin labelled T7 promoter primer for the cycle sequence. After urea denaturing polyacrylamide gel electrophoresis, biotin was detected with Streptavidin alkaline phosphatase and lumistain.

Results

SENSITIVITY OF THE NESTED PCR SYSTEM

The PCR products from Nalm 6 and CESS using the outer and inner pairs of primers for the CDRIII locus of the IgH gene were 90-130 base pairs (bp), whereas those for CDRII were 220-60 bp. The product generated by the outer pair of primers was longer than that generated
by the inner pair. The PCR products of the
TCR\(\gamma\) gene from CCRF-CEM and Molt-4
were about 230–70 bp (data not shown).

IgH gene rearrangement could be detected
in 1 ng DNA by nested PCR, compared with
at least 1 ng required for the detection of gene
rearrangement when only the outer pair of
primers was used. Similarly, TCR\(\gamma\) gene
rearrangement could be detected in 10 ng DNA
by nested PCR, whereas PCR using only outer
pair of primers required 100 ng of DNA (fig 1).

COMPARISON BETWEEN
IMMUNOHISTOCHEMISTRY AND NESTED PCR

Figure 2 shows the results of detection of B
cell and T cell lymphomas extracted from
paraffin wax sections using nested PCR. A faint
smear can be seen for the negative control.

Table 1 shows the clinical data, localisation of
the malignant lymphomas, and the results
of immunohistochemical analysis and nested
PCR of the 31 samples. Immunohistochemistry
confirmed B cell origin in 21 samples, in which
most lymphoma cells were immunoreactive for
L26 (fig 3A), MB1, and Ig\(\kappa\) or Ig\(\lambda\). Three
specimens were classified as T cell lymphoma
because they were immunoreactive for UCHL1
(fig 3B) or MT1. Seven samples were immuno-
reactive for both B and T cell markers.

Of the 21 B cell lymphomas, nested PCR
demonstrated IgH gene rearrangement in 18
(85-7%), of which four were CDRIII positive,
three were CDRII positive, and 11 were both
CDRIII and CDRII positive. In addition to
IgH gene rearrangement, a single TCR\(\gamma\) gene
band was detected in nine samples. There were
no single bands for IgH and TCR\(\gamma\) in three
samples. Two of three T cell lymphomas had
TCR\(\gamma\) gene rearrangements, while sample 22
had no single bands. The seven samples, in
which the cell origin could not be determined
by immunohistochemistry, consisted of five B
and two T cell lymphomas, the diagnosis of
which was confirmed by the presence of a single
band for IgH and TCR\(\gamma\), respectively.

Thus, the cell origin of the lymphomas was
firmed in 24 samples (77-4%) by immuno-
histochemistry and in 27 (87-1%) by nested

![Figure 2](image-url)
PCR. The use of both procedures allowed us to determine the cell origin in all 31 samples.

Sequencing revealed conserved regions of IgH and TCR\(\gamma\) following the cloning site of the vector. This confirmed that the PCR products were in fact derived from IgH and TCR\(\gamma\) gene rearrangements (data not shown).

Discussion

We detected IgH and TCR\(\gamma\) gene rearrangements in paraffin wax specimens by nested PCR. Nested PCR does not require a definitive band in the first stage, so the annealing temperature can be set relatively high, thus increasing the specificity. Moreover, the procedure was sensitive enough to detect gene rearrangement in 1 pg of DNA, equivalent to the amount of DNA in a single cell. In paraffin wax samples 87% of malignant lymphomas could be detected by nested PCR, whereas using only the outer pair of primers, only 39% of malignant lymphomas were detected.

We examined the sequences of the PCR products to confirm that PCR actually amplified the IgH and TCR\(\gamma\) genes. The sequences of the conserved regions of the IgH and TCR\(\gamma\) genes were found after that of the cloning vector.

Some investigators have examined IgH gene rearrangement using PCR, especially the CDRIII locus.\(^{24}\) Because the rearrangement of the light chain is complex and is unsuitable for PCR, we examined IgH gene rearrangements. The detection rate of malignant lymphoma using the CDRIII locus is only about 80%.\(^{19}\) Therefore, examination of another IgH locus is required to identify false negative results. Ramasamy et al.\(^{19}\) examined the CDRII locus and reported that there are some instances where samples are CDRIII negative, CDRII positive, suggesting that examination of the CDRII locus would facilitate the identification of false negative results. We therefore examined the CDRII and CDRII loci. In three samples in the present study rearrangements were detected in the CDRII locus only.

TCR\(\gamma\) gene rearrangement occurs in the following sequence: \(\delta\), \(\gamma\), \(\beta\), and \(\alpha\). Moreover, because the \(\delta\) chain locus is included within the \(\alpha\) chain, \(\delta\) chain deletions are observed when the \(\alpha\) chain rearranges. Though rearrangements are occasionally observed in the \(\delta\) chain only, almost all of them are found in the \(\gamma\) chain. \(\beta\) and \(\gamma\) chain rearrangements can be identified by Southern blotting, but the rearranged profile of the \(\beta\) chain is complex. Therefore, rearrangement of the \(\gamma\) chain can be detected more readily by PCR than that of the \(\beta\) chain.\(^{25}\) In fact, we obtained satisfactory results by analysing the \(\gamma\) chain.

Chen et al.\(^{28}\) reported that the TCR\(\gamma\) gene is frequently rearranged in B cell malignancies. In the present study, both the IgH and TCR\(\gamma\) genes were rearranged in nine samples, which were also B cell marker positive by immunohistochemistry.

Histological diagnosis is often difficult when the biopsy specimen is too small, when an artefact is prominent, or when necrosis is present. In seven of the 31 samples examined in this study, a definitive diagnosis of malignant lymphoma could not be made by histology alone. A diagnosis of malignant lymphoma was confirmed by examining gene rearrangement using nested PCR. However, gene rearrangements were not detected in four samples. These samples had been fixed in formaldehyde for a long period of time and the

Figure 3 Immunohistochemical staining (×132) with (A) L26 and (B) UCHL1 antibodies.
DNA had probably degraded. Immunohistochemistry confirmed the diagnosis in these samples.

In conclusion, 77% of 31 malignant lymphomas were diagnosed by immunohistochemistry and 87% by nested PCR. Moreover, all 31 samples were correctly diagnosed by a combination of nested PCR and immunohistochemistry. We conclude that both nested PCR and immunohistochemistry are essential for routine diagnostic studies of paraffin wax sections of malignant lymphoma.

We thank Dr C Glenn Begley from The Walter and Eliza Hall Institute of Medical Research for helpful advice and Dr M Moto from the Tottori University Faculty of Medicine for providing the paraffin wax sections.

