Disappointing dipstick screening for urinary tract infection in hospital inpatients

Z Zaman, A Borremans, J Verhaegen, L Verbiest, N Blanckaert

Abstract

Aim—To compare the performance of leucocyte esterase and nitrite dipstick tests with microscopic examination and culture of first morning urines (n = 420) of hospital inpatients.

Results—The sensitivity, specificity, and negative predictive value of the leucocyte esterase test for the cutoff of > 10 WBC/µl were 57%, 94%, and 68%, respectively. For > 5 WBC per high power field (HPF) these variables were 84%, 90%, and 93%. For > 10³ colony counts/ml, the sensitivity of the nitrite test was 27%, specificity 94%, and negative predictive value 87%. When either leucocyte esterase or nitrite positivity was accepted as a marker of urinary tract infection, the sensitivity was 78%, specificity 75%, and negative predictive value 94%, and there were 22% false negative results. Semiquantitative microscopic estimation of bacteria per HPF yielded 40% false positives.

Conclusions—Leucocyte esterase and nitrite dipstick tests are not suitable for screening for urinary tract infections.

(J Clin Pathol 1998;51:471–472)

Keywords: leucocyte esterase; nitrite; dipstick

Screening of urine specimens for urinary tract infection by means of dipstick leucocyte esterase and nitrite test is not an uncommon practice, although the standard method for diagnosis of infected urine remains microscopic examination and quantitative culture of urine. We have evaluated the diagnostic performance of the dipstick test in hospital inpatients in comparison with the microscopic and culture results.

Methods

Over a three week period, 420 first morning urine samples from hospital inpatients on which urine cultures had been requested were randomly selected for additional tests. These tests included (1) test strip screening with multistix 8 SG (Bayer Corporation, New York, USA), (2) direct microscopic counting of the white blood cells (WBC) and bacteria per micro litre of urine using Kova counting chambers (Hycor Biomedical Inc, California, USA), (3) urine sediment microscopy, after centrifugation at 350 g for five minutes, to obtain WBC and bacteria per high power field (HPF). The strips were read by reflectance spectrophotometric method on Clinitek 200+ (Bayer).

Urine cultures were performed by inoculating, from a standard loop, 10 µl of uncentrifuged and well mixed urines on to blood agar and MacConkey plates (Oxoid, Hampshire, UK), and incubating aerobically at 37°C overnight. Growth of ≤ 10⁻⁵ colony forming units (CFU) per ml was considered negative.

The patients consisted of 234 females (mean age 55 years, range 17 days to 97 years) and 186 males (mean age 58 years, range 9 to 94 years) and they belonged to the following general groups: paediatrics (4), oncology (5), obstetrics/gynaecology (39), surgery (51), geriatrics (57), ambulant consultation (68), internal medicine (93) and medical and postoperative intensive care (103).

Results

Using the standard criterion of ≥ 10⁵ CFU/ml for urinary tract infection, 72 patients’ urines (17%) produced positive cultures. Of these 18 (25%) were infected with non-nitrate-reducing organism, these being mainly enterococci and candida. With a less stringent criterion of

Table 1 Performance of urine dipstick tests in comparison with microscopic and culture results

<table>
<thead>
<tr>
<th>Positive screening test</th>
<th>Reference cutoff</th>
<th>n</th>
<th>%FN</th>
<th>%FP</th>
<th>%Sen</th>
<th>%Spec</th>
<th>%PPV</th>
<th>%NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leucocyte esterase (LE)</td>
<td>> 10 WBC/µl</td>
<td>204</td>
<td>43</td>
<td>61</td>
<td>97</td>
<td>94</td>
<td>91</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>>20 WBC/µl</td>
<td>136</td>
<td>23</td>
<td>22</td>
<td>77</td>
<td>91</td>
<td>81</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>> 5 WBC/HPF</td>
<td>126</td>
<td>20</td>
<td>11</td>
<td>84</td>
<td>90</td>
<td>77</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>≥ 5 × 10⁵ CFU/ml</td>
<td>90</td>
<td>31</td>
<td>23</td>
<td>75</td>
<td>77</td>
<td>45</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>≥ 10⁵ CFU/ml</td>
<td>72</td>
<td>26</td>
<td>24</td>
<td>84</td>
<td>76</td>
<td>39</td>
<td>93</td>
</tr>
<tr>
<td>Nitrite</td>
<td>≥ 5 × 10⁵ CFU/ml</td>
<td>90</td>
<td>73</td>
<td>67</td>
<td>22</td>
<td>77</td>
<td>93</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>≥ 10⁵ CFU/ml</td>
<td>72</td>
<td>67</td>
<td>62</td>
<td>22</td>
<td>77</td>
<td>93</td>
<td>52</td>
</tr>
<tr>
<td>Nitrite or LE</td>
<td>≥ 5 × 10⁵ CFU/ml</td>
<td>90</td>
<td>28</td>
<td>25</td>
<td>77</td>
<td>72</td>
<td>46</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>≥ 10⁵ CFU/ml</td>
<td>72</td>
<td>22</td>
<td>26</td>
<td>86</td>
<td>78</td>
<td>75</td>
<td>94</td>
</tr>
<tr>
<td>Nitrite plus LE</td>
<td>≥ 5 × 10⁵ CFU/ml</td>
<td>90</td>
<td>77</td>
<td>69</td>
<td>20</td>
<td>72</td>
<td>94</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>≥ 10⁵ CFU/ml</td>
<td>72</td>
<td>71</td>
<td>51</td>
<td>20</td>
<td>72</td>
<td>94</td>
<td>51</td>
</tr>
<tr>
<td>Signif bacteria/HPF</td>
<td>≥ 5 × 10⁵ CFU/ml</td>
<td>90</td>
<td>17</td>
<td>15</td>
<td>101</td>
<td>83</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>≥ 10⁵ CFU/ml</td>
<td>72</td>
<td>8</td>
<td>8</td>
<td>140</td>
<td>92</td>
<td>60</td>
<td>32</td>
</tr>
</tbody>
</table>

CFU, colony forming units; FN, false negative; FP, false positive; HPF, high power field; NPV, negative predictive value; PPV, positive predictive value; Sen, sensitivity; Spec, specificity.

Figures in brackets represent numbers of cases.
472

Zaman,Borremans,Verhaegen,etal

nostic sensitivity improved at the cost of
esterase positive result was used for the
assessed at di
tests for leucocyte esterase and nitrite was
forsignificantbacteria(>50bacteria/HPF)by
considered positive for urinary tract infection.

> 5 × 10^4 CFU/ml, 90 patients (21%) could be
considered positive for urinary tract infection.
Two hundred and six specimens were positive
for significant bacteria (> 50 bacteria/HPF) by
microscopic examination of the sediment.

The diagnostic performance of the Multistix
tests for leucocyte esterase and nitrite was
assessed at different cutoff levels of WBC and
CFU per ml of urine, respectively. The results
are shown in table 1.

Discussion

Multistix test for WBC measures leucocyte
esterase of neutrophil granules and has analyti-
cal sensitivity of 10–25 WBC/µl or 5–15 WBC/
HPF (manufacturer’s data sheet). The nitrite
test is an indirect measure of nitrate reducing
bacteria (which include all enterobacteria, and
most non-fermenters and Gram negative cocci)
provided urine contains sufficient dietary nitrate and has been retained in the bladder for longer than four hours. This test is sen-
titive to > 13 µmol/l nitrate.

Of 420 specimens, 204 contained > 10
WBC/µl and 126 had > 5 WBC/HPF. The
diagnostic sensitivity, specificity, and positive
predictive value of the leucocyte esterase test were
57%, 94%, and 91%, respectively, for
> 10 WBC/µl, and 84%, 90%, and 77% for > 5
WBC/HPF (our reference intervals being < 10
WBC/µl and/or < 5 WBC/HPF). False negative
leucocyte esterase results at these cutoff levels
of WBC were respectively 43% and 16%. Raising
the diagnostic cutoff for WBC/µl to > 20
WBC/µl improves the sensitivity (77%) and
negative predictive value (88%), but the false
negative results still remained high at 23%.
This makes the leucocyte esterase test unsuitable
as a surrogate of microscopic examination for
WBC.

The reference intervals for urinary WBC of
< 10 WBC/µl and < 5 WBC/HPF imply that
these limits are equivalent. This assumption
was not substantiated by our results. Whereas
204 urines had > 10 WBC/µl, only 126 samples
were found to contain > 5 WBC/HPF. On the
other hand the results for cutoff values of > 20
WBC/µl and > 5 WBC/HPF were similar. This
clearly showed—albeit indirectly—that the
common reference intervals of < 10 WBC/µl
and < 5 WBC/HPF are not equivalent. There
is no ready method for interconverting results
per HPF and results per µl. Nevertheless it can
be stated that > 5 WBC/HPF is probably more
neatly equivalent to > 20 WBC/µl than to > 10
WBC/µl.

For the detection of bacteria, the diagnostic
sensitivity of the nitrite test was 27% for > 5 ×
10^4 CFU/ml and 33% for > 10^5 CFU/ml.
When either a nitrite positive or a leucocyte
esterase positive result was used for the
diagnosis of urinary tract infection, the diagno-
sis sensitivity improved at the cost of

specificity, while the opposite was true when
both nitrite and leucocyte esterase were
required to be positive for the detection of
infected urine. Although the negative predict-
ive value for the nitrite/leucocyte esterase
positive combination was more than 90%, the
false negative rate of > 20% is unacceptably
high for hospital inpatients (see table 1). This
is also borne out by the fact that even when urine
contained > 10^5 nitrite producing bacteria/ml,
only 43% samples yielded positive results with
the nitrite test. When we further subdivided the
patients with > 10^5 nitrite producing bacteria/ml (n = 72) into those from whom
urine was collected from an indwelling catheter
(n = 23) and those who voided unaided (n = 49) we found that 19 patients (83%) with in-
dwelling catheters and 29 (59%) of the self
voiding patients had negative nitrite test
results. The poor concordance between the
culture and the nitrite test results in these
inpatients may have been the result of short
contact time, reduced nitrate excretion, or
dilution of urine by large volumes of
intravenous infusions.

Microscopic estimates of significant bacteria
(> 50 bacteria/HPF) in the urine sediments
gave 40% false positive results. Although nega-
tive predictive values would indicate (see table
1) that the microscopic estimation of bacteria
in the sediments is a good screening method,
this needs to be weighed against false negative

erates of 17% and 8% for the urines of hospital
inpatients containing > 5 × 10^4 CFU/ml and
> 10^5 CFU/ml, respectively.

From this study we conclude that because of
their high false negative rates the leucocyte
esterase and nitrite dipstick tests are not
suitable for screening of hospital inpatients
for urinary tract infections. This conclusion is
supported in different settings by other pub-
lished reports with respect to leucocyte
esterase, nitrate, and leucocyte esterase and
nitrite tests. Two groups, however, have
reported that dipstick tests are a good screen-

ing method for urinary tract infections in new
paediatric patients. With a false positive
result rate of 40%, semiquantitative micro-
scopic estimation of bacteria (per HPF or per
µl) is also an unreliable marker of infected
urine.

1 Patrick DM, Rekrt ML, Knowles L. Unsatisfactory
performances of the leukocyte esterase test of first voided
urine for rapid diagnosis of urethritis. Genitourin Med
2 Backman JW, Heise RH, Naessens JM, et al. A study of vari-
ous tests to detect asymptomatic urinary tract infections in
3 Propp DA, Weber D, Ciesla ML. Reliability of a urine dip-
stick in emergency department patients. Ann Emerg Med
4 Molynex BE, Robson WJ. A dipstick test of urinary tract
5 Woodward MJ, Griffiths DM. Use of dipsticks for routine
analysis of urine from children with acute abdominal pain.