Chromosome 3p loss of heterozygosity and mutation analysis of the FHIT and β-catenin genes in squamous cell carcinoma of the head and neck

María Victoria González, Marta F Pello, Pilar Ablanedo, Carlos Suárez, Victoria Alvarez, Eliecer Coto

Abstract

Aims—To study the loss of heterozygosity at the short arm of chromosome 3 in primary tumours from patients with squamous cell carcinoma of the head and neck; to determine whether the FHIT gene, mapped to 3p14.2 and the CTNNB1 (β-catenin) gene, mapped to 3p21, are deleted or mutated in these tumours.

Methods—DNA was extracted from fresh tumours. Loss of heterozygosity was assessed by microsatellite analysis of the following markers: D3S1283 and D3S1286 (3p24), D3S966 (3p21), and D3S1300 (3p14.2). Homozygous deletion was determined by radioactive multiplex polymerase chain reaction of exons 5 and 6 of the FHIT gene. The presence of mutations in FHIT exon 5 and β-catenin exon 3 was studied by single strand conformation polymorphism.

Results—50% of informative cases (25/50) showed loss of heterozygosity for at least one of the 3p markers. 3p21 was the region with the highest rate of allelic deletion (65%). No point mutation was found in FHIT exon 5 or β-catenin exon 3. No case showed homozygous deletion for the FHIT (exons 5 and 6) or the β-catenin exon 3.

Conclusions—The short arm of chromosome 3 is often deleted in the head and neck squamous cell carcinomas. In the remaining alleles of the FHIT or β-catenin genes, no evidence was found for point mutations or deletions, documented in other common carcinomas. Inactivation could occur by different mechanisms such as methylation, or other genes (not studied here) could be target of allelic losses in squamous cell carcinoma of the head and neck.

Keywords: squamous cell carcinoma of head and neck; loss of heterozygosity; mutation analysis; FHIT gene; β-catenin gene

Head and neck squamous cell carcinoma (HNSCC) is one of the most common types of cancer in the world. In Western countries it accounts for up to 5% of all cancers. Despite efforts to improve early diagnosis and treatment of patients with these neoplasms, their prognosis remains poor. Its five year survival rate has not changed in recent years, and is still one of the lowest among the prevalent cancers. HNSCC is strongly associated with tobacco and alcohol consumption.

Several genetic alterations have been described in tumours from HNSCC patients, including non-random cytogenetic abnormalities, mutations or overexpression of the H-ras, p53, and cyclin D genes, and alterations of the p16INK4A gene. Increased expression of epidermal growth factor receptor and mutations at several oncogenes have also been reported.

Functional loss of tumour suppressor genes is one of the most common genetic alterations in human neoplasms. Defining chromosomal regions that harbour biologically important tumour suppressor genes may have practical implications for the diagnosis and management of these tumours. Cytogenetic studies have revealed that the short arm of chromosome 3 is often altered by chromosomal rearrangements and deletions in several cancer types, including HNSCC. These data suggest the presence of one or more tumour suppressor genes located at 3p, inactivation of which may contribute to HNSCC development. Three commonly deleted regions, mapped to 3p24, 3p21, and 3p14, have recently been identified by analysis of allelic losses (loss of heterozygosity).

Homozygous deletions are detected at a much lower frequency than heterozygous deletions and are usually smaller in size. Therefore homozygous deletions may be of considerable help in the localisation and identification of tumour suppressor genes. A 440 kb homozygous deletion mapped to the distal part of 3p21 has been described in a small cell lung carcinoma cell line, where a tumour suppressor gene locus has been proposed.

Recently, the fragile histidine triad gene (FHIT) has been mapped to 3p14.2 and shown to span a renal carcinoma associated translocation breakpoint. Altered transcripts of FHIT were reported in about 80% of cases of small cell lung carcinoma. The β-catenin gene (CTNNB1) is located at chromosome region 3p22-p21.3, where loss of heterozygosity and homozygous deletion have been observed. β-catenin expression is associated with malignant transformation. β-Catenin has recently been shown to act as an oncprotein in melanoma.
and colon cancer cell lines. Small deletions and point mutations affecting Ser residues on its NH$_2$-terminal domain have been described.$^{26-28}$

In this report we investigated loss of heterozygosity at several 3p regions in various HNSCC tumours. In addition, we searched for homozygous deletions and mutations at the FHIT and β-cat genes.

Methods

Patients and DNA Extraction

Paired tumour and blood samples from 55 HNSCC patients were collected. The fresh tumour tissue was isolated by microdissection, and specimens containing more than 70% neoplastic cells were placed at 37°C for 24 hours in lysis solution containing sodium dodecyl sulphate (SDS) and proteinase K. Genomic DNA from primary tumours was obtained after phenol-chloroform extraction and ethanol precipitation.29 DNA was obtained after phenol-chloroform dodecyl sulphate (SDS) and proteinase K.

Pairing of Tumour and Blood Samples

Each patient was matched with paired normal DNA from the same lymphocyte-rich blood samples. Tissue specimens were macroscopically and histologically stage I, 17 were stage II, 18 were stage III, and 28 were stage IV.

Microsatellite Loss of Heterozygosity Analysis

Microsatellite markers D3S1286 and D3S1300 (3p24.2), D3S966 (3p21.3), and D3S1283 (3p14.2) were analysed to determine the loss of heterozygosity at the short arm of chromosome 3. D3S1300 maps intragenic to the FHIT gene. Figure 1 represents the relative position of these markers. Primers were previously described and are summarised in Table 1.31,32 Polymerase chain reaction (PCR) was performed in a 15 µl reaction volume containing 100 ng genomic DNA, 10 pmol of each primer, 200 µM each of dATP, dGTP, and dTTP, 100 µM dCTP, 2 mM MgCl$_2$, 0.10 µCi [α-³²P]dCTP (3000 Ci/mmol, Amersham International, Amersham, Buckinghamshire, UK), 1 x Taq buffer, and 0.5 units of Taq-DNA polymerase (Promega, Madison, Wisconsin, USA). Conditions consisted of an initial denaturing step of five minutes at 98°C, followed by 25 cycles of 30 seconds at 98°C, one minute at 58°C, and 20 seconds at 72°C, followed by a final extension of five minutes at 75°C. Taq-DNA polymerase was added after the initial denaturing step. PCR products were mixed with one volume of denaturing loading buffer (95% formamide, 1% xylene cyanol), heated at 98°C for five minutes, and electrophoresed on a 6% denaturing polyacrilamide gel (45% urea, 5.7% acrylamide, and 0.3% bis-acrylamide). After electrophoresis the gels were vacuum dried and autoradiographed at −80°C for 2–24 hours.

After densitometric analysis of bands of the two matched samples, loss of heterozygosity was defined as a reduction of at least 75% in the signal of one allele in tumour DNA. PCR amplification primers were designed for the FHIT and β-cat genes. PCR amplification was performed using the primers described in Table 1.31,32 One microlitre of formamide was added to the PCR reaction mixtures, and the PCR products were separated on a 6% denaturing polyacrilamide gel (45% urea, 5.7% acrylamide, and 0.3% bis-acrylamide). After electrophoresis the gels were vacuum dried and autoradiographed at −80°C for 2–24 hours.

PCR Amplification of the FHIT, β-CAT, and DD1 Loci

Genomic DNA from primary tumours was simultaneously amplified for exons 5 and 6 of the FHIT gene by multiplex PCR (the sets of primers for both loci were included in the PCR reaction mixture) under the same conditions as described for microsatellite analysis. A sequence mapped to 3p21, designated DD1, was also amplified, as well as exon 3 of the β-cat gene. PCR primers for these sequences were previously described and are summarised in Table 1.31,32 One microlitre of formamide was added to the PCR reaction mixtures to improve PCR specificity. We also reduced the number of PCR cycles to 25 in order to minimise the masking effect of “contaminant” DNA from non-tumour cells. Electrophoresis was performed under the same conditions as described for microsatellite analysis.

SSCP Analysis of FHIT and β-CAT

SSCP analysis was adapted from the original method of Orita et al.33 PCR amplification of FHIT exon 5 and β-cat exon 3 was performed.
as described for microsatellite analysis. Formamide denaturing loading buffer (50 µl) was added to the reaction mixture and heated at 98°C for five minutes. Five microlitres were immediately loaded on a 6% polyacrylamide gel containing 10% glycerol. Electrophoresis was at 20 W for five hours at room temperature.

Results
To determine the relative incidence of loss of heterozygosity at chromosome 3 regions 3p24.2, 3p21.3, and 3p14.2, we compared the microsatellite patterns of DNA samples from 55 HNSCC with their normal tissue (lymphocyte) counterparts. Four microsatellite markers were used: D3S1283 and D3S1286 (3p24.2), D3S966 (3p21.3), and D3S1300 (3p14.2) (fig 1). The latter is intragenic to the FHIT gene and therefore loss of heterozygosity at this region represents the loss of one of the FHIT alleles. Fifty cases were informative for at least one of the markers, and loss of heterozygosity at 3p was found in 25 (50%) of the patients (fig 2). The incidence of loss of heterozygosity for each marker was: 11% (5/45) for D3S1286; 37% (15/40) for D3S1283; 63% (19/30) for D3S966; and 32% (8/25) for D3S1300. No significant differences in the rate of 3p loss of heterozygosity were found with respect to tumour stage.

None of the tumours showed homozygous deletion of the FHIT genes (exons 5 and 6) and the β-cat gene (exon 3) (fig 3). The DD1 locus was also amplified from the 55 tumours (data not shown). SSCP analysis of the FHIT (exon 5) and β-cat (exon 3) genes showed the same normal band pattern in every case, suggesting the absence of mutations at these sequences (fig 2).

Discussion
Loss of heterozygosity is one of the most common genetic alterations involved in cancer development and is associated with the presence of tumour suppressor genes. Regions of common loss of heterozygosity are found in HNSCC, including 9p21, 17p13, and 3p. While tumour suppressor genes have been described as the main targets for 9p21 and 17p13 deletions (p16INK4A and p53, respectively), it is still not known which are the genes inactivated by 3p deletions.

Three commonly deleted regions—mapped to 3p24, 3p21.3, and 3p14—have been identified in HNSCC. Analysis with microsatellite markers D3S1283, D3S1286, D3S966, and D3S1300 allowed us to determine the inci-
Chromosome 3p loss in squamous cell carcinoma of head and neck

523

deference of allelic loss at the short arm of chromosome 3 in our patients. Fifty per cent of the cases showed loss of heterozygosity for at least one of the markers, a frequency similar to that reported by other investigators. 13, 14, 15, 16, 17 However, other reports described a higher loss of heterozygosity. 18, 19 These differences can partly be attributed to the different microsatellite markers used or to differences with respect to tumour grade and tumour stage. Loss of heterozygosity at 3p was present in early stage tumours with a frequency that did not differ significantly from that of more advanced tumours. This suggests that 3p loss of heterozygosity is an early event in HNSCC progression, as has been suggested by other investigators. 20, 21

Deletions at 3p are the most common alterations in lung cancers, and three deleted regions have been reported for squamous cell lung carcinoma. 15 This type of tumour shares histology and major aetiological factors, such as tobacco smoke, with HNSCC. This supports the hypothesis of a common oncogenic pathway for these two neoplasms and suggests the existence in 3p of at least three tumour suppressor genes involved in the neoplasias of the aerodigestive tract. This is also supported by the similar pattern of 9p and 17p heterozygosity loss in both cancer types.

Exon specific PCR amplification showed that some lung cancer cell lines had intragenic homozygous deletions of exon 5 of the FHIT gene, mapped to 3p14. 22, 23 This chromosomal region was identified as the most common fragile site in humans. 24 Aberrant transcripts were reported in 80% of small cell lung carcinoma and 40% of non-small cell lung carcinoma. 25 Exon 5 is the most consistently deleted of the FHIT exons in several types of cancer cell lines. 26 Aberrant transcripts have also been reported in 60% of the HNSCC cell lines, with the deletion of exons 4 to 8 as the most common alteration. 27 In order to assess whether the FHIT gene could be the target of 3p14 deletions in primary HNSCC, we searched for homozygous deletions and exon 5 mutations at this gene. No tumour showed homozygous deletion, as assessed by multiplex PCR performed on a reduced number of cycles in order to minimise the effect of contaminant non-tumour DNA. This has allowed us to detect homozygous deletions in other genes. 28 SSCP analysis suggested the absence of mutations. It is possible that mutations at the FHIT exon 5 are not detected by our SSCP analysis. However, this is not likely, since we have used this technique for the analysis of the p53 gene, and direct sequencing showed that we were able to detect most of the mutations. 29, 30 Alternatively, the FHIT gene could be inactivated by mechanisms other than point mutation or homozygous deletion, such as transcription silencing by methylation, a mechanism involved in the inactivation of other tumour suppressor genes like p16 31, 32. We also failed to find homozygous deletion at the DD1 locus, mapped to 3p21, a sequence homozygously deleted in a small cell lung carcinoma cell line. 33

Finally, the human homologue of the bacterial DNA mismatch repair gene MutL (hMLH1) has been mapped to chromosome region 3p21 and is mutated in patients with hereditary non-polyposis colorectal cancer. 34, 35 The hMLH1 protein plays a role in the control of replication fidelity, and tumours with mutations at this gene are characterised by microsatellite instability as a result of mismatch repair deficiencies. We have not found any tumour showing this alteration, indicating that microsatellite instability is a rare event in the progression of HNSCC tumours and suggesting that hMLH1 is not the target of 3p deletions in HNSCC.

This work was supported by grant FISS 96/1418 (EC). MVG is the recipient of a fellowship of the FICYT (Fundación para el Fomento en Asturias de la Investigación Científica aplicada y la Tecnología).

