Xenotransplantation—2000

M J Goddard, J E Foweraker, J Wallwork

Major advances in techniques and the development of new immunosuppressive drugs and strategies have led to transplantation becoming the treatment of choice for end stage organ failure, with patients achieving long term survival and a high quality of life. The cost benefits of transplantation have been well recognised and renal transplantation alone saves huge amounts of money spent on dialysis. Despite the many advantages of organ transplantation, this treatment is unavailable to many who would benefit, owing to the shortage of organs. The gap between the numbers on waiting lists and the available organs continues to widen as the number of donors declines in many countries. The unmet need for organs may be still higher, as transplant physicians are selective about who they list because of the lack of donors, and the potential need for transplantation may exceed availability even if all suitable organs were used.

The shortage of human organs for transplantation has stimulated intense research into alternative sources. Consideration has been given to the use of old world monkeys and apes, but the need to rear the animals in isolation raises ethical concerns. In addition, viruses from non-human primates are perceived as a particular risk to humans. Pigs are currently the only animals being seriously considered as a source of organs for transplantation to humans. Pigs have been domesticated and have lived close to man for hundreds of years, grow quickly to a suitable size, produce large litters, can be reared in specific pathogen-free conditions, and there is already considerable expertise in pig husbandry. The ethical concerns are less, given that animals are reared for human consumption and porcine tissues are already used in prosthetic heart valves.

Xenotransplantation (the transplantation of tissues from one species to another) has several potential benefits provided the various obstacles can be overcome. The use of pigs as a source of organs would provide an almost unlimited supply. The organs would be available at all times, allowing surgery to be planned and optimally timed, and the damaging effects of brain death on the organs would be avoided. Early work on xenotransplantation showed that the major obstacle would be the immune reaction of the host to the graft. Recent advances, however, have made significant strides in overcoming this, bringing the possibility of xenotransplantation closer. If the problems of rejection can be overcome, there remain concerns that there may be physiological or anatomical incompatibilities or limitations that affect graft function or survival. There are particular concerns that the xenograft may allow the cross species transfer of infectious organisms and allow spread to other members of society.

A further advantage of the pig is that it is possible to manipulate the germline DNA in order to insert human genes, allowing pig tissues to be better tolerated by human recipients. There are also considerable similarities between porcine and human anatomy and physiology. However, a recent comparison of the anatomy of porcine and human hearts identified several differences, many of which are attributable to the different stances (walking on four legs rather than two; unguligrade versus orthograde) and the effect of gravity on the development of the heart. Despite these differences, the transplanted organs appear to be able to adapt very well to a new host, for example pig hearts in monkey hosts.

Physiological differences may also pose problems. While the handling of sodium and potassium by pig and human kidneys is similar, there are differences in the normal serum concentrations of calcium and phosphate. These simple metabolic incompatibilities may not be of great significance, but multicellular organisms also require cells to be able to communicate with each other through hormones and other molecules, and little is known about these more complex cross species compatibilities. Porcine insulin has been in use for many years as a treatment for diabetes mellitus and is clearly compatible, differing by only one amino acid from human insulin. During insulin production, C peptide is released and there is evidence that it has biological activity. In a rat model, human and rat C peptide have been shown to prevent or attenuate some diabetes induced pathophysiological changes. Porcine C peptide differs considerably from human C peptide and may not have this effect.

In contrast, erythropoietin appears to be ineffective in the pig to monkey transplant model but this may be overcome with replacement therapy. These problems will vary depending on which organs are transplanted but are likely to be most marked in the liver owing to the multiple synthetic functions of the organ. The efficacy of porcine complement and coagulation proteins in humans is not known, and furthermore, significant structural differences may render them immunogenic. Many of the inflammatory and immune reactions that will involve the graft will depend on adhesive interactions between porcine endothelium and inflammatory cells. An incompatibility might work to the graft’s advantage if immune cells are unable to adhere and transmigrate, but the converse—pig haematopoietic cells unable to adhere to human endothelium—could prevent strategies aimed at inducing tolerance. The full spectrum of physiological incompatibilities...
is not yet clear, but differences may be amena-
table to other treatments and should not be an
insurmountable barrier.
Discordant xenografts are those rejected
within minutes to hours of perfusion by recipi-
ent blood, a process termed hyperacute
rejection.22 This rejection is caused by the
presence of naturally occurring preformed
xenoreactive antibodies which account for
2–4% of circulating immunoglobulin. The
antibodies bind mainly to the Gal α1-3Gal
epitope, which is widely present in the animal
canine but not in human, and in other pri-
mates, and old world monkeys.23 Binding of
antibody to endothelium results in comple-
ment activation with endothelial damage,
oedema, haemorrhage, and graft loss. Deposi-
tion of antibody, predominantly IgM, and
terminal complement components can be
identified, using immunohistochemical tech-
niques, on the endothelial surface of the graft.14
The graft function as though there has been a
complete failure in the integrity of the
endothelial barrier. Although complement me-
ediated lysis of endothelial cells would account
for this, there is little evidence of endothelial
cell destruction. Complement can mediate
other changes in the endothelium, most
importantly the shedding of heparan sulphate
from the endothelial cell surface,15 changes in
cell shape resulting in the formation of
intercellular gaps, and the expression of
P-selectin on the cell surface, which can serve
as ligands for platelets.16
Major advances have been made in overcom-
ing the problems of hyperacute rejection.
Immunoadsorption of the antibody27 or deple-
tion of complement by the use of cobra venom
factor or soluble complement receptor 1
(sCR1) results in improved graft survival and
prevents hyperacute rejection.22 The longest
survival, however, has been achieved by the use
of genetically modified transgenic pigs carrying
and expressing human complement regulatory
proteins CD55 (decay accelerating factor,
DAF), CD46 (membrane cofactor protein,
MCP), and CD59 (protectin), either singly or
in combination.10 21 22
If hyperacute rejection is prevented, the
grafts become subject to acute vascular xeno-
graft rejection or, as it is also called, delayed
xenograft rejection. This is characterised by
endothelial damage and swelling, thrombosis,
and ischaemia. A variable cellular infiltrate may
also be observed.12 Continued interaction of the
graft with xenoreactive antibodies appears
important in the process. Peak levels of xeno-
reactive antibodies are seen at the time of
rejection, and strategies that remove antibodies
or inhibit their synthesis have been shown to
delay the onset of acute vascular rejection.23 25
Complement also almost certainly has a role.
Acute vascular rejection may occur in comple-
ment depleted animals, as depletion strategies
are not 100% effective and low level comple-
ment activation is sufficient to stimulate a pro-
coagulant and proinflammatory change in the
endothelial cells.25 27 The primary interface of
the graft and host is the endothelial cell barrier
and this has a crucial role in regulating coagu-
lation and leucocyte trafficking in tissues. Expos-
ure of endothelial cells to inflammatory
mediators results in their activation, with a
dramatic change in their function.25 26 Acti-
ated endothelial cells change from an antico-
agulant to a procoagulant phenotype with loss
of thrombomodulin and heparan sulphate,
although porcine thrombomodulin has been
shown to be a poor regulator of the human
coaulation cascade. The endothelial cells also
synthesize tissue factor which is able to initiate
coaulation by binding coagulation factor VIIa.
The balance of the fibrinolytic pathway is
shifted by decreased production of plasmino-
gen activators and increased synthesis of
plasminogen activator inhibitor-1.28 The endo-
thelial cells become proinflammatory owing to
the increased expression of cell adhesion
molecules such as E-selectin (E-Sel), and
vascular cell adhesion molecule (VCAM).31
These phenotypic changes can be induced by
the activation of complement on the surface of
endothelial cells. This is not a direct response
of the endothelial cells but requires the synthe-
sis and secretion of interleukin (IL)-1α by the
endothelial cells, which activates the cells in an
autocrine fashion. This complement mediated
activation of endothelial cells can be blocked by
the use of IL-1 receptor blockade or anti-IL-1α
antibodies.27
Many of the key synthetic events that underlie
endothelial activation require gene transcrip-
tion. Many of the genes are to a large extent
dependent on the actions of the transcription
factor NF-κB. This transcription factor is
usually present in the cytoplasm of cells
complexed to its inhibitor IκBα. On receiving an
activating stimulus, the NF-κB is released and
translocates to the nucleus where it is able to
bind to promoter regions, resulting in
transcription.32 This common pathway of activa-
tion may provide a site for therapeutic inter-
tervention to inhibit endothelial cell activation.
Cellular mechanisms may also play a role in
rejection. Natural killer cells have been ob-
served in some grafts with acute vascular rejec-
tion, and the presence of IgG in the graft may
aid in the recruitment and activation of these
cells. Natural killer cells are able to directly
recognise oligosaccharide ligands expressed by
endothelial tissues33 and have been shown to
cause morphological changes and activation of
endothelial cells in vitro, thereby contributing
to acute vascular rejection.34 35 Macrophages
have also been observed within grafts and are a
potential source of inflammatory cytokines
such as tumour necrosis factor α, which is also
an endothelial cell activator.36 37
Elicited cellular immune responses occur
following xenotransplantation but it is not clear
whether these differ from the response seen in
allograft transplantation and whether novel immu-
nosuppressive strategies will be needed. The
vigor of the humoral response to xenografts has
made it difficult to study the nature of the cellular
response because of short
graft survival and the high level of immunosup-
pression required to overcome the humoral
response. Studies of free tissue grafts, such as
pancreatic islet cells, which are non-
vascularised have suggested a role for CD4 cells. In mixed leucocyte cultures, T cells tend to show a poor direct response to xenogeneic cells. This is occurring in the absence of antigen presenting cells and is thought to reflect impaired interaction with xenogeneic major histocompatibility complexes, and indirect responses may be of more importance.

Experience in human allotransplantation has shown that the donor organ can be a source of a wide variety of infectious agents. These include viruses such as cytomegalovirus, Epstein-Barr virus, and HIV, parasites such as Toxoplasma gondii, a wide range of bacteria including mycobacteria, and even fungal infections. The results of these can be devastating, threatening the survival of the graft and the life of the patient. The fact that these adverse events are now relatively rare reflects the careful approach taken in selecting the donor and reducing opportunities for transmission or contamination at organ procurement. This experience has focused attention on the need to assess the risk of infection from the source animal used for xenotransplantation.

The organisms that may pose a risk to the human recipient need to be identified. It is misleading to consider only the known zoonotic agents of pigs, even if that is extended to those reported to cause infection in an immunocompromised patient. In xenotransplantation, the classical route of acquisition of most zoonoses has been bypassed, and the practical risk of infection being introduced with the graft must be considered. Cryptosporidium, for example, causes severe disease in the immunocompromised patient and can be found in the stool of a pig. It would be unlikely to reach a human recipient by way of the transplanted organ unless gut transplantation were considered. Conversely some pig agents never thought of as zoonotic could be introduced with an infected pig organ. It is known that a wide variety of bacteria, including environmental organisms and plant pathogens, as well as saprophytic fungi can infect the immunocompromised host. There is not therefore the same species specificity as is seen in many viral infections. Parasites may appear host specific, but direct introduction with porcine tissue into an immunosuppressed host may lead to diseases not previously encountered.

An infection acquired at xenotransplantation (xenozoonosis or xenosis) may therefore occur by the same mechanism as hyper acute rejection. If the α-Gal antibodies are removed or production suppressed then lysis will not occur. Incorporation of complement regulatory proteins into the viral envelope could render the virus resistant to complement mediated lysis. This may increase the likelihood of viral zoonosis in the setting of xenotransplantation. The complement regulatory proteins also function as receptors for some other viruses. CD46 is a receptor for the measles virus and CD55 for certain echo viruses and coxsackie viruses. Transgenic animals may therefore become susceptible to human viruses and, conversely, previously specific pig porcine viruses may be able to adapt to use the human proteins as viral receptors.

Much is known about the infectious agents present in domesticated pigs, but new diseases are being recognised. Identified pathogens can be excluded from animals reared as specifically pathogen free. The logistical problems and detrimental effects on growth of rearing pigs in a totally germ-free environment makes this a less attractive option. Knockout technology, to exclude these specifically for the purpose of organ supply, it should be possible to institute a programme of disease prevention and screening from the outset. This would have to be modified as knowledge of pig infection advances.

While many of the potential pathogens can be screened for and eliminated from herds reared under specific pathogen-free conditions, pigs, like all mammals, have retroviruses within their genomic DNA. These proviral genomes are inherited in a Mendelian fashion. These viruses show some sequence homology with other retroviruses which are known to cause disease such as feline leukaemia virus. It is estimated that there are approximately 50 endogenous retroviral copies in most pig chromosomes. It is unlikely that it will be possible, through either selective breeding or gene knockout technology, to exclude these sequences. Concerns have been raised that retroviruses can reactivate and pose a threat to the recipient. It has recently been shown that retroviruses released from porcine endothelial cells are capable of infecting human cells in tissue culture. Analysis of human patients who have been exposed to porcine tissues, either through islet cell grafts or through connection to extracorporeal circuits to pig kidneys, or livers, has not shown any evidence of infection, either serologically or by the demonstration of DNA sequences from the porcine retroviruses. These studies are limited, however, in that few patients were immunosuppressed and the porcine tissues were not from transgenic animals.

The risk of infection following xenotransplantation seems small but is still difficult to predict. By breeding and rearing animals free of a defined list of organisms there is the potential to produce an organ donor where the risks are less than those from a previously
unknown human donor. The emphasis has been on looking at the risk of viral infection, in particular the problem of endogenous retroviral species. This should, however, always be borne in mind that the other organisms that may be transmitted at transplantation can cause major problems. Care must be taken, not only in the development of the specific pathogen-free animal, but also during organ procurement, transport, and transplantation to ensure that transmission of infection that could have been avoided does not occur. The decision to progress to clinical trials of xenotransplantation will need to balance the benefit to progress to clinical trials of xenotransplantation with the risks of xenozoonosis, particularly in relation to the development of new immunosuppressive strategies bringing the possibility of clinical xenotransplantation closer.

The concerns over anatomical and physiological disparity do not appear insurmountable. The risks of xenoozonosis, particularly in relation to retroviruses, appear small but remain an area of concern. There is an increased understanding of the immunopathology of xenograft rejection and the development of new immunosuppressive strategies bringing the possibility of clinical xenotransplantation closer.


Contents December 1999 Vol 52 No 6

Reviews
307 Demystified ... The Epstein-Barr virus and its association with human cancers K R N Baumforth, L S Young, K J Flaxell, C Constandinou, P G Murray

Papers
323 Differential detection of type II collagen N-terminal and C-terminal denaturation epitopes in degrading cartilage L J Croucher, A P Hollander
332 Decreased metastatic spread in mice homozygous for a null allele of the cystatin C protease inhibitor gene C-G Huh, K Hakansson, C-M Nathanson, U P Thorgeirsson, N Jonsson, A Gubb, M Abrahamson, S Karlsson
341 Abl expression, tumour grade, and apoptosis in chondrosarcoma M O'Donovan, J M Russell, J J O'Leary, J A Gillan, M P Lawler, E F Gaffney
345 HHV-8 (KSHV) is not associated with bacillary angiomatosis S J Nayler, U Allard, L Taylor, K Cooper
349 Parvovirus B19 is associated with benign testes as well as testicular germ cell tumours T C Diss, L X Pan, M Q Du, H Z Peng, J R Kerr
353 Mutational analysis of the PTEN/MMAC1 gene in primary oesophageal squamous cell carcinomas Y C Hu, K Y Lam, J C O Tang, G Srivastava

Technical report
357 Amplification of FISH signals using intermittent microwave irradiation for analysis of chromosomal instability in gastric cancer Y Kitayama, H Igarashi, H Sugimura

Miscellanea
360 Book review • Books received • List of assessors • Christmas message • Annual author index to volume 52 • Annual subject index to volume 52 • Annual contents index to volume 52