Pasteurella multocida meningitis in an adult: case report

G R Armstrong, R A Sen, J Wilkinson

Abstract

Pasteurella multocida is known to form part of the normal flora in the nasopharynx or gastrointestinal tract in many domestic and wild animals. Most human *P. multocida* infections are soft tissue infections caused by dog or cat bites. Less commonly this bacterium is associated with infections affecting other organ systems of man. A case of fatal *P. multocida* meningitis discovered at the necropsy of a 52 year old man is described. *P. multocida* is an unusual causative agent of meningitis which tends to affect those at the extremes of age. ([J Clin Pathol 2000;53:234–235])

Keywords: Pasteurella multocida; meningitis

Pasteurella multocida is a non-spore forming, non-motile, Gram negative coccobacillus. It has been isolated from the respiratory tract and digestive system of domestic pets, livestock, and many wild animals. The carriage rate of the organism is believed to be up to 90% in cats and up to 66% in dogs. *P. multocida* has been known to cause infections in humans, the most familiar being soft tissue infection following animal bites. However, this organism may affect a variety of systems causing serious disease.

Case report

A 52 year old man was found dead at home. No history of illness in the preceding days was available, there is no record of him seeking any medical attention. He had recently been under investigation for dyspepsia but otherwise had no medical history of serious illness. The subject lived with his brother, both reportedly in a state of serious self neglect. Their house was soiled with dog faeces throughout and their pet dog was in poor health.

Pathological examination

The subject was a white male whose appearance was consistent with the stated age of 52 years. He was well nourished and there were no external marks, bites, or scratches. On internal examination a purulent meningitis was found. In particular the cranial vertex and base of brain were affected. A sample of meningeal pus was taken for subsequent culture. The brain was slightly swollen and there was generalised vascular congestion. No skull fractures were present.

The lungs were congested and mildly oedematous. A small thromboembolus was present in the right lower lobe pulmonary artery. There was no evidence of chronic respiratory disease. Mild coronary atherosclerosis and duodenitis were noted. There was no evidence of malignancy, and no other foci of infection were identified. The cause of death was declared to be purulent meningitis.

Bacteriology

Postmortem culture of a swab of meningeal pus on chocolate blood agar produced a pure growth of colonies resembling *Haemophilus spp* within 24 hours. However, the isolate was identified on API 20 NE (Bio-Merieux Ltd) as *Pasteurella multocida*.

Discussion

Pasteurella were first observed in the blood of birds with fowl cholera in 1877. *P. multocida* ("killer of many species") was isolated by Pasteur as the causative agent of this disease in 1880. Human infection by *P. multocida* was not recognised until some years later. The first case reported was described in 1913 by Brugnatelli. In this case the organism was isolated from the blood of a woman with puerperal fever.

P. multocida is most commonly recognised as a cause of soft tissue infection secondary to animal bites. However, various infections have been described where this organism was the agent responsible, in particular affecting those with impaired immune defences and those at the extremes of age.1,2

P. multocida meningitis is uncommon. Cases of *P. multocida* meningitis have occurred following animal bites, scratches, and other animal contact. The organism has also been known to be transmitted through animal saliva without a bite having occurred.3 In some cases of infection, no known animal contact has been determined.4 Meningitis caused by this agent has also been reported following spread of the bacterium from infected wounds after craniofacial surgery.1 A few cases have occurred in neonates after infection related to maternal carriage of the organism in the genital tract.5

The subjects in whom *P. multocida* meningitis most often occurs are at the extremes of age, being either elderly people or young infants. The typical case involves infants under the age of one year with a history of animal exposure, and cases in adults are unusual.5,6 Kumar et al., in a review of cases, found that 40% occurred in infants under one year. When post-traumatic and post-surgical cases were eliminated, 70% of adult cases occurred in people over 55 years of age.6

Mortality in *P. multocida* meningitis is high. In the series by Kumar overall mortality was 30%, but was higher in the elderly—63% in patients over 60 years in age.7 In another series
of 17 cases, seven of whom were adults, six patients died within 72 hours of hospital admission. Four of these six fatalities involved persons over 60 years of age.¹

Diagnosis of this agent can be difficult, in that Gram staining of CSF will reveal a Gram negative coccobacillus. This results in the organism being confused with more common agents of meningitis such as N meningitidis and H influenzae. However, identification of P multocida is normally straightforward, although false positive antigen testing with latex particle agglutination tests has been reported.³

In conclusion, we have presented a case of meningitis caused by P multocida, causing a sudden death in the community. The subject was an adult with no evidence of recent animal bite or chronic debility, but who lived in squalor with obvious animal contamination of his environment. Cases such as this appear to be unusual. However, the high frequency of animal contacts and the relative rarity of such infections must indicate that the risk is low. The majority of infections are wound infections related to animal bites. P multocida meningitis is rare, particularly in the adult. However, it is a very serious condition with a high mortality. Therefore, where meningitis occurs in addition to a history of animal exposure, P multocida infection should be considered.

Acknowledgements to HM Coroner, Bolton, for the kind permission to report details of the above case.

Prevalence of HIV and hepatitis C markers among a cadaveric population in Milan

Cattaneo et al report the interesting finding of human immunodeficiency virus (HIV) infection in individuals lacking risk behaviour. With any postmortem sample, serological false positivity is a well known phenomenon, and in the above instance in particular, confirmatory testing is important for confidence in test results. Although concordance in different screening assays is an excellent predictor for true positivity with any antemortem blood samples, the same may not be true for postmortem samples, where false positivity as a result of unsuitability of analyte can occur with more than one assay. When a single screening test is used, confirmation is especially important.

John Barbara
London and SE Zone NBS, London, UK

George Galea
Scottish National Blood Transfusion Service, 21 Ellen’s Glen Road, Edinburgh EH17 7QT, UK

Ruth Warwick
London and SE Zone NBS, London, UK

The authors reply
We thank Drs Barbara, Galea, and Warwick for their letter concerning our article on testing specimens from cadavers for markers of human immunodeficiency virus (HIV) and hepatitis C infection. The points they raise are all covered in the article, but are worth emphasising.

We are well aware that false positive serological reactions can occur with postmortem samples and commented on this in the discussion section; it was for this reason that data for hepatitis B serology were not included.

We agree that confirmation testing is especially important and were pleased with the concordance of the postmortem results for HIV testing between the enzyme linked immunosorbent assay (ELISA) and agglutination methods, and between the postmortem and (where known) antemortem findings.

Our article emphasises that in the subjects studied, lack of risk behaviour does not mean that there was necessarily no risk behaviour—just that it was not common knowledge and was unknown to the pathologist carrying out the necropsy.

The main point of our paper was that medico-legal practice deals with a particular and selected population that has a high prevalence of markers for HIV and hepatitis C infection, irrespective of known risk behaviour, and in many cases a rapid and easily performed screening test would give early warning of a potential problem.
regard statistics as a form of codified
guesswork and, at worst, a tool to increase
the chance of publication of data beyond a p
value of 0.05. It is a challenge to write for
such a partitioned readership and Jones and
Payne have, quite rightly, tended to serve the
needs of the less numerate majority.

This book is well laid out with the use of
highlighted sections and abundant graphical
illustrations. There are few formulae with
which to grapple and the text is mainly a nar-
rative account of the statistical manipulations
and the reasons behind them. This is leavened
with a sprinkling of biographical snippets.

Overall, this is not a “how to do it” text but
rather it explains why things are done that
way. The volume is relatively slim, there are
less than 190 pages of figures and text and
this has led to a rather steep rate of ascent in
the introductory section. However, for a
readership that has a medical background
and has endured formal attempts by statisti-
cians to justify their stewardship of the Holy
Grail, this text is to be recommended. Those
undertaking research projects that require
detailed statistical interpretation may then
move on to more applied texts such as
Altman’s Practical Statistics for Medical Re-
search (Chapman and Hall, London 1991,
ISBN 0 412 27630 5). However, many may
not make this progression and an acquaint-
ance with the contents of Clinical Investiga-
tion and Statistics in Laboratory Medicine
would, nevertheless, be a major advantage.

WILLIAM R ROCHE

Best Practice articles (formerly “Broadsheets”) prepared by the Association of Clinical
Pathologists

Just published

158 Neuropathology 2000 WR TIMPERLEY
157 Guidelines for the laboratory handling of laryngectomy specimens 2000 TR HELLIWELL
156 Handling oesophageal biopsies and resection specimens and their reporting 2000 NIB IBRAHIM

Recent Publications

155 Pathological investigation of deaths following surgery, anaesthesia, and medical procedures 1999
RD START, SS CROSS
154 Helicobacter pylori 1999 CAM McNULTY, JJ WYATT (with correction in June issue)

Other Best Practice articles are still available for purchase

153 The laboratory investigation of vaginal
discharge 1998 KF MACSWEEN, GL RIDGWAY
152 Clinical implications of plasma homocysteine
measurement in cardiovascular disease 1998
RA STILL, IFW MCDOWELL
151 Investigation of dyslipidaemias 1997 AF WINDER,
W RICHMOND, DT VALLANCE
150 Antenatal serological testing and prevention of
haemolytic disease of the newborn 1997 JKM DUGUID
149 Serological diagnosis of gluten sensitive enteropathy
1996 DJ UNSWORTH
148 Laboratory diagnosis of malaria 1996
DC WARHURST, JE WILLIAMS
147 Mycological techniques 1996 KG DAVEY,
CK CAMPBELL, DW WARNOCK
146 Macroscopic examination of prostatic specimens
1995 P HARNDEN, MC PARKINSON
145 Investigation of patients with autoimmune haemolytic
anaemia and provision of blood for transfusion 1995
RJ SOKOL, DJ BOOKER, R STAMPS

Prices

INLAND One copy, £2.50; 2–10 copies
(of any one broadsheet or reprint),
£2.00 each; 11–100 copies (of any
one), £1.75 each; 101 plus copies (of
any one), price to be agreed; authors
(over 50 free copies), £1.25 each.

OVERSEAS One copy, $6.75; 2–10 copies
(of any one broadsheet or reprint),
$5.25; 11–100 copies (of any one),
$3.75; 101 plus copies (of any one),
price to be agreed.

Authors $2.25. Prices include postage
but air mail will be charged extra. Trade
discount 10%. All orders (and all
changes of address of regular
subscribers) should be sent to the
Publishing Manager • Journal of Clinical
Pathology, BMJ Publishing Group,
BMA House, Tavistock Square,
London WC1H 9JR.