Hormone replacement therapy and the endometrium

K M Feeley, M Wells

Abstract

Modern hormone replacement therapy (HRT) regimens contain oestrogen and progestogen, given either in a cyclical or continuous combined manner. Most endometrial biopsies from women on sequential HRT show weak secretory features. Approximately 15% show proliferative activity, although this figure may be less if more than nine days of progestogen is given in each cycle. A small proportion will show an inactive or atrophic endometrium. Up to 50% of biopsies from women on continuous combined HRT contain minimal endometrial tissue for histopathological analysis: this correlates well with an atrophic endometrium with no appreciable pathology. Of the 50% with more substantial material, approximately one half will show endometrial atrophy, and one half will show weak secretory features. Proliferative, menstrual, and pseudodecidual changes are rare. Approximately 20% of women given unopposed oestrogen for one year develop endometrial hyperplasia. The relative risk of endometrial carcinoma is two to three. This is dramatically reduced by the addition of progestogen to the regimen, but cyclical progestogen as part of a sequential HRT regimen does not completely eliminate the risk of carcinoma. The prevalence of endometrial hyperplasia associated with sequential HRT is 5.4%, and that of atypical hyperplasia (endometrial intraepithelial neoplasia) is 0.7%. Continuous combined HRT is not associated with the development of hyperplasia or carcinoma, and may normalise the endometrium of women who have developed complex hyperplasia on sequential HRT. The ability of a histopathologist finding clinically relevant pathology in an endometrial biopsy specimen of a patient on HRT is low and is more likely to be a manifestation of pre-existing disease.

Keywords: endometrium; hormone replacement therapy; endometrial hyperplasia; endometrial carcinoma

Hormone replacement therapy (HRT) is used to treat vasomotor symptoms and conditions such as atrophic vaginitis in perimenopausal and postmenopausal women, and its long term use also has a role in reducing the incidence of osteoporosis and ischaemic heart disease in postmenopausal women. At least 20 million women in developed countries are estimated to be using HRT. Modern HRT preparations contain oestrogen and progestogen: progestogen is necessary to protect against the risk of endometrial hyperplasia and carcinoma conferred by long term unopposed oestrogen treatment. This risk is discussed more fully below. There are two commonly used regimens, sequential (cyclical) and continuous combined. Sequential HRT may be monthly or three monthly. Monthly sequential HRT comprises continuous oestrogen with progestogen added for 10–14 days/cycle or calendar month, producing monthly withdrawal bleeding. With three monthly sequential HRT, progestogen is given quarterly for 10–14 days, producing quarterly withdrawal bleeding. Continuous combined HRT involves both agents being used continuously: the growth promoting effects of oestrogen are opposed by progestogen, resulting in an atrophic endometrium. This is advantageous in that it eliminates the withdrawal bleeding associated with sequential HRT, which can be a major reason for non-compliance. A woman who has had a hysterectomy can take oestrogen without a progestogen. An oestrogen implant is one option, and tablets, patches, or gel preparations are alternatives. A woman who has had endometrial ablation needs a progestogen, however, because some endometrial tissue may not have been destroyed by the procedure.

The histological assessment of the endometrium is an important part of the continuing follow up of patients taking HRT, and the histopathologist needs to be familiar with the appearances of the endometrium in a patient taking HRT. In this review, we discuss the effects of HRT on the endometrium and consider those appearances a histopathologist receiving endometrial biopsy specimens from patients on HRT is likely to encounter.

“Pipelle” samples and diagnostic difficulties with endometrial biopsies

Many endometrial biopsy specimens from women on HRT will be obtained by the Pipelle sampler as an outpatient procedure. This method frequently results in very little tissue for histological analysis (up to 59% of biopsies in one study). The amount of endometrial tissue required for a diagnosis by a histopathologist used to seeing biopsy specimens of this type is much less than that demanded by those unused to such biopsies. In many cases, a few short strips of endometrial-type epithelium or one or two endometrial-type glands may be all that is present. Rather than dismissing such
Feeley, Wells

Endometrial histology in women on sequential HRT

Endometrial samples from women on sequential HRT may show secretory, proliferative, or inactive patterns. Most samples will show weak secretory activity characterised by cytoplasmic vacuolation only. These samples will usually have been taken during the progestogen phase of the HRT regimen. Approximately 15% of samples will show proliferative activity characterised by the presence of epithelial mitotic figures. Of these, approximately half will have been taken during the progestogen phase, and half during the oestrogen only phase. Women receiving progestosterone for nine or more days/cycle show a significantly lower degree of proliferative activity. A small proportion (7–8%) will show an inactive endometrium. A distinction may be made between an inactive and an atrophic endometrium: all atrophic endometria are inactive, but an inactive endometrium may not be atrophic. Endometrial atrophy is less often seen in patients on sequential HRT than in those on continuous combined HRT. In pragmatic terms, there is little clinical relevance in distinguishing between an atrophic and an inactive endometrium. Endometrial hyperplasia may also occur with sequential HRT, and its prevalence is discussed further below.

Correlation between bleeding patterns and endometrial histology in patients on sequential HRT

In clinical practice, the onset of bleeding on or after day 11 of the progestosterone phase is often taken as reassurance of a normal endometrium and, conversely, irregular bleeding is often considered to be a sign of endometrial pathology. The endometrial response to sequential HRT is highly variable, however, and the classic histological criteria used to date the endometrium physiologically in relation to bleeding cannot be used in the context of the HRT exposed endometrium. A UK multicentre trial showed that most women start bleeding around the 13th day after starting progestogen, and that there is no correlation between the endometrial histology and the time of onset of bleeding. As regards endometrial hyperplasia, it was found that 37 of the 65 women with complex hyperplasia and four of the eight with atypia had regular bleeds after day 11. Another recent study on bleeding patterns in women on sequential HRT found a trend towards later withdrawal bleeding with secretory endometrium and earlier bleeding with inactive or atrophic endometrium, but with too much overlap for this to be of clinical relevance. It is therefore not possible to predict endometrial histology on the basis of bleeding patterns, and bleeding patterns cannot identify those rare cases where sequential HRT fails to protect the endometrium from the development of hyperplasia. Similarly, unexpected bleeding does not necessarily indicate endometrial pathology.

Continuous combined HRT and the endometrium

Studies have shown that continuous combined HRT induces an atrophic endometrium and eliminates bleeding in most postmenopausal women within six to 12 months. It is known that the continuous presence of progestogen in a regimen of continuous combined HRT causes downregulation of oestrogen and progesterone receptors, which in turn decreases sensitivity to hormonal stimulation. In addition, progesterone induces 17-β dehydrogenase, which converts oestradiol to the less active oestron, thereby reducing the oestrogenic stimulus. It is not known which of these mechanisms predominates in producing endometrial atrophy in postmenopausal women on continuous combined HRT.

Early data on continuous combined HRT also suggested that it may be capable of transforming a hyperplastic endometrium into a state of atrophy. Staland reported on 22 women with endometrial hyperplasia who, after six months treatment with continuous combined HRT, were all found to have an atrophic endometrium.

In a recent UK multicentre study, which is the largest to date reporting on endometrial histology in postmenopausal women taking continuous combined HRT, endometrial biopsy specimens were assessed after nine months of continuous combined HRT in two groups of women: those who had previously
received sequential HRT, and those who had received no previous HRT. Women with endometrial hyperplasia without atypia were allowed to continue in the study and to receive study medication. The study reported no cases of endometrial hyperplasia: this supports the findings of previous studies using continuous combined HRT. All of the women with complex hyperplasia on sequential HRT reverted to normal endometrial patterns after continuous combined HRT. This supports the earlier findings of Staland. No cases of endometrial malignancy were reported.

The post-treatment biopsies in this study were “unassessable” in 46% of previously untreated women, and in 37% of women who had previously received sequential HRT. This is broadly in support of previous studies, which have shown that more than 50% of biopsy specimens from postmenopausal women on continuous combined HRT are unassessable. Those post-treatment biopsies that were assessable showed similar features in both groups, with approximately half showing atrophy and half showing low grade secretory changes. The latter were mainly manifested by a variable degree of cystoplasmic vacuolation, which presumably reflects the simultaneous stimulation of the endometrium by oestrogen and progestagen, analogous to the early luteal phase. Pseudodecidual or menstrual-type changes were rare, and only 1.8% of previously untreated women and 2.3% of women previously receiving sequential HRT showed proliferative activity. Once again, these findings support those of a previous study, in which proliferative activity was found in 3.6% of women who had been taking progestogen daily for 24 months. One possible explanation for the presence of proliferative activity in these few cases is that the relative dose of progesterone might have been inadequate to suppress totally the oestrogenic stimulation of the endometrium. Alternatively, endogenous factors, such as obesity, might contribute to persistent endometrial stimulation despite continuous combined HRT.

Therefore, the implications of this study are that continuous combined HRT is not associated with an increased risk of endometrial hyperplasia or malignancy, and indeed may normalise an endometrium showing pretreatment complex hyperplasia. This in turn implies that continuous combined HRT provides a reassuring degree of endometrial safety and is appropriate as a regimen for long term use in postmenopausal women.

HRT and endometrial hyperplasia and neoplasia

Before any discussion of HRT and the risk of endometrial carcinoma, two important points should be remembered. First, it has been shown clearly that the endometrial lesion associated with a significant risk of carcinoma is atypical hyperplasia. The morphological hallmark of endometrial precancer is cytological atypia, although it is now recognised that the lesion also has characteristic architectural features that equate with monoclonality. There is general acceptance that atypical hyperplasia is a neoplastic process, quite distinct from true hyperplasia. Hence, use of the term “endometrial intraepithelial neoplasia”, or EIN, has been advocated. In contrast to atypical hyperplasia, it may be argued that true endometrial hyperplasia represents the physiological response of the endometrium to excess oestrogen, and therefore has a low risk of neoplastic transformation. The histological changes associated with the current diagnoses of simple and complex hyperplasia merely reflect different patterns of the hyperplastic endometrial response to excess oestrogen, whereas the development of precancer requires other, as yet unidentified, cofactors.

Second, postmenopausal women, who represent the major group of patients taking HRT have, by virtue of their age, a background prevalence (albeit low) of endometrial precancer and cancer, which must be taken into account when assessing the risks of HRT. In a study of 801 asymptomatic women, Archer et al found a prevalence of endometrial hyperplasia of 5.2% and of atypical hyperplasia of 0.6%, with one case of endometrial carcinoma. Korhonen et al evaluated endometrial biopsy specimens from 2064 perimenopausal and postmenopausal women who were candidates for HRT, and found 68.7% of these to be atrophic, 23.5% proliferative, 0.5% secretory, and 0.6% to be hyperplastic; 0.07% showed adenocarcinoma and 6.6% had insufficient tissue for classification. The authors concluded that the low yield of endometrial carcinoma indicated that biopsy was unnecessary before starting HRT in asymptomatic women.

UNOPPOSED OESTROGEN TREATMENT

An association between endogenous hyperoestrogenism and endometrial hyperplasia was documented in the 1940s and 1950s before the introduction of exogenous oestrogen
Treatment. The association between exogenous oestrogen treatment and endometrial carcinoma was documented in the 1970s, and since then has been confirmed repeatedly. The reported risk ratio for endometrial carcinoma in women taking unopposed oestrogen has varied from 2.3 to 10. The risk increases with increasing daily dose and duration of treatment. The risk persists for many years after oestrogen treatment has been stopped. Oestrogen related endometrial carcinoma risks are greater in lean than in overweight women, implying that exogenous oestrogens have an additive (rather than multiplicative) effect on endometrial carcinogenesis, and suggesting the existence of an upper risk threshold or the existence of some limiting factor (for example, sex hormone receptors) that impedes the continued efficacy of the combined oestrogenic stimuli of obesity and exogenous oestrogen beyond a certain level. Data also suggest that the risk of endometrial carcinoma is reduced among women who have used oral contraceptives. It may be that oral contraceptive use renders the endometrium less susceptible to hormonal carcinogenesis.

Studies have shown repeatedly that there is an association between unopposed oestrogen treatment and endometrial hyperplasia, and some have shown an association between the dose of oestrogen and the prevalence of hyperplasia. The “postmenopausal estrogen/progestin intervention (PEPI) trial” was a large, prospective, randomised, double blind study, which found that women assigned to oestrogen alone (0.625 mg conjugated equine oestrogen) were significantly more likely to develop simple (27.7%), complex (22.7%), or atypical hyperplasia (11.7%) than those given placebo (simple 0.8%, complex 0.8%, atypical 0%; p < 0.001). This study demonstrated the necessity for baseline and annual endometrial biopsy samples when a high dose of unopposed oestrogen such as this is used.

Sequential HRT

It is well established that the addition of a progestogen to an HRT regimen substantially reduces the risk of endometrial carcinoma. Although some studies have reported no significant differences in the incidence of endometrial carcinoma among women on combined HRT compared with women not taking HRT, recent studies have suggested that the cyclical addition of progestogen to HRT does not completely eliminate the risk. Beresford et al found that the relative risk of endometrial carcinoma in women using a sequential combined regimen of oestrogen and at least 10 days of progestogen was 1.3 (confidence interval (CI), 0.8 to 2.2), increasing to 2.5 (CI, 1.1 to 5.5) with five or more years of use, compared with an odds ratio of 1.0 for women who had never used hormones. This study also showed that fewer than 10 days of progesterone/cycle gave a relative risk of 3.1 (CI, 1.17 to 5.7), and, when used for five or more years, a relative risk of 3.7 (CI, 1.7 to 8.2). Weiderpass et al found that women receiving a sequential combined regimen of oestrogen and fewer than 16 days progesterone for five or more years had a relative risk of carcinoma of 1.6, compared with controls. Pike et al found no significant increase in the risk of carcinoma in women receiving combined and sequential HRT, the latter with 10 or more days of progesterone/cycle; however, in women on sequential HRT with less than 10 days progesterone/cycle, an increased risk of carcinoma of similar magnitude to that of women on unopposed oestrogen was found.

The PEPI trial found that women on sequential HRT showed a tendency to develop hyperplasia (simple 3.4%, complex 1.7%, atypical 0%), but the numbers were small and the differences between regimens were not significant. The PEPI trial also reported that of 36 women who developed oestrogen induced hyperplasia during the trial, 34 reverted to normal on discontinuation of the oestrogen and introduction of progestogen.

In the UK multicentre study, endometrial biopsy data were generated for women treated with sequential HRT for a mean duration of 2.5 years (range, 1–6 years). Complex hyperplasia was found in 5.4%, and atypical hyperplasia in 0.7%. It is possible that these figures, which are higher than those reported previously, may reflect the duration of the study, which had a longer mean duration of treatment than previous studies. There were no cases of endometrial carcinoma. Most (76.8%) of the biopsies showing hyperplasia were taken during the progestogen phase of the treatment cycle, whereas 17.8% were taken during treatment with oestrogen alone. There were no significant differences in the prevalence of hyperplasia between regimens containing 10 or 12 days progesterone. Hyperplasia was found to be significantly more prevalent with regimens containing levonorgestrel than those containing norethisterone acetate (7.3% vs 4.2%). Hyperplasia was also more prevalent with lower doses of progesterone than with higher dose treatment. These results suggest that the risk of endometrial hyperplasia might be increased in women treated with sequential HRT containing lower doses of progesterone.

Broadly similar results were seen in a more recent study that compared a long cycle (three monthly) sequential HRT regimen with a monthly cycle, progesterone being given for 10 days in each cycle; there was a higher incidence of hyperplasia, and one case each of atypical hyperplasia and carcinoma, in the long cycle group, compared with the monthly cycle group. In addition, the long cycle group had a more irregular bleeding pattern, and correspondingly a higher drop out rate.

Continuous Combined HRT

Endometrial carcinoma has been reported only rarely in women taking continuous combined HRT regimens. In most cases, however, the women had a history of unopposed oestrogen or sequential HRT use with less than 10 days of progesterone, or risk factors such as a family history of endometrial carcinoma.
discussed above, the largest study to date reporting endometrial histology in postmeno-
pausal women on continuous combined HRT showed no cases of endometrial hyperplasia or
malignancy with an atrophic endometrium being induced in more than two thirds of
women during a nine month treatment pe-
riod. All the women with complex hyperplasia on sequential HRT who completed the study
reverted to non-hyperplastic endometrial pat-
terns.

In the three years of the PEPI trial there were no recorded cases of complex hyperplasia in
women on continuous combined HRT, com-
pared with 1.7% of 118 women treated with sequential HRT and 0.8% of 119 women
treated with placebo. Further recent study of
continuous combined HRT over a two year
period reported no cases of endometrial hyper-
plasia, confirming the findings of earlier stud-
ies.32,50

Conclusions

Most endometrial biopsies from women on
sequential HRT show weak secretory features,
and a minority show proliferative or inactive
endometrium.

Many (up to 50%) biopsies from women on
continuous combined HRT contain minimal
tissue for examination. Approximately 50% of
more substantial biopsies show endometrial atrophy, and approximately 50% show weak
secretory features.

Providing the uterine cavity has been sam-
piled, a biopsy containing minimal or no
endometrial tissue in a postmenopausal
woman on HRT is reassurance that there is no
clinically relevant endometrial pathology.

There is no correlation between bleeding on
HRT and endometrial histology.

Unopposed oestrogen will cause endome-
trial hyperplasia in approximately 20% of
women after one year of treatment. The relative
risk of carcinoma is two to three.

Combining progestogen with oestrogen sub-
stantially reduces the risk of atypical endome-
trial hyperplasia and adenocarcinoma.

Sequential HRT is associated with a low risk
of endometrial hyperplasia and atypical hyper-
plasia (approximately 1% for atypical hyperpla-
sia). Regimens containing less than 10 days
progestogen or lower doses of progestogen may
conf use a higher risk of hyperplasia, atypical
hyperplasia, and adenocarcinoma.

Continuous combined HRT is not associ-
ated with the development of endometrial hyperplasia or malignancy.

The likelihood of the histopathologist find-
ing clinically relevant pathology in the endome-
trial biopsy of a woman taking HRT is low and is more likely to be a manifestation of
pre-existing disease.

1 Beral V, Banks E, Reeves G, et al. Use of HRT and the sub-
2 Whitbread ML, King RJ, McQueen J, et al. Endometrial
histology and biochemistry in climacteric women during
oestrogen and progestogen therapy. J R Soc Med 1979;72:
332–7.
3 Paterson MEL, Wade-Evans T, Sturdee DW, et al. Endome-
trial disease after treatment with oestrogens and pro-
4 Gelfand MM, Ferenczy A. A prospective 1-year study of
endometrial histology in perimenopausal women treated
5 Woodruff JD, Pickar JH, for the Menopause Study Group.
Incidence of endometrial hyperplasia in postmenopausal
women taking conjugated oestrogens (Premarin) with
medroxyprogesterone acetate or conjugated estrogens
and short term estrogen replacement therapy. II. Neoplasia. Am J
Obstet Gynecol 1979;133:537–47.
7 Persson I, Adami HO, Bergqvist L, et al. Risk of endometrial
cancer after treatment with oestrogens alone or in conjunc-
tion with progestogens: results of a prospective study. Br J
8 Voight LF, Weiss NS, Chu J, et al. Progestagen supplemen-
tation of exogenous oestrogens and risk of endometrial
9 Berezofsky SA, Weiss NS, Voight LF, et al. Risk of endome-
trial cancer in relation to oestrogen combined with cyclic
progestogen therapy in postmenopausal women. Lancet
replacement therapy and endometrial cancer. J Natl Cancer
Instit 1987;89:1110–16.
11 Whitehead MI, Hillard TC, Crook D. The role and use of
12 Hawthorn RJS, Spowart K, Walsh D, et al. The endometrial
status of women on long-term continuous combined
hormone replacement therapy. Br J Obstet Gynaecol
13 Hillard TC, Siddle NC, Whitehead MI. Continuous
combined conjugated equine estrogen-progestagen
therapy: effects of medroxyprogesterone acetate and
testosterone acetate on bleeding patterns and endome-
trial histologic diagnosis. Am J Obstet Gynecol 1992;167:
1–7.
14 Barentsen R, Groeneveld FP, Bareman FP, et al. Women's
opinion on withdrawal bleeding with hormone replacement
15 Hahn RG. Compliance considerations with estrogen
replacement: withdrawal bleeding and other factors. Am J
16 Ravnikar VA. Barriers for taking long-term hormone
17 Rees M. Menstrual bleeding with hormone replacement
endometrial hyperplasia by progestosterone during long-term estradiol replacement: influence of bleeding pattern and
19 Pegna A, Calder A, Davis JA, et al. Endometrial status in
post-menopausal women on long-term continuous com-
bined hormone replacement therapy (Klofen). A com-
parative study of endometrial biopsy, outpatient hysteros-
copy and transvaginal ultrasound. Eur J Obstet Gynecol
20 Stovall TG, Photopoulas GS, Poston WM, et al. Pipelle
sampling in patients with known endometrial carcinoma. Obstet
21 Fothergill DJ, Brown VA, Hall AS. Histological sampling of
the endometrium: comparison between formal curettage and
22 Batsol T, Reginald PW, Hughes JH. Outpatient Pipelle
diagnostic endometrial biopsy in the investigation of post-menopausal
23 Sturdee DW, Barlow DH, Bartlett MA, et al. The endometrial
response to sequential and continuous combined oestrogen-progestagen replacement therapy. Br J Obstet Gynaecol
24 Archer DF, Pickar JH, Bottiglione F. Bleeding patterns in
postmenopausal women taking continuous combined or
sequential regimens of conjugated oestrogens with medroxyprogesterone acetate. Obstet Gynecol 1994;83:
686–92.
25 Padwick ML, Pryse-Davies J, Whitehead MI. A simple
method for determining the optimal dose of progestin in
postmenopausal women receiving oestrogens. Br J Obstet
26 Alhabia MA, Bell SC, Al-Azzawi F. Endometrial responses to
hormone replacement therapy: histological features
compared with those of late luteal phase endometrium.
27 Sturdee DW, Barlow DH, Ulrich LG, et al. Is the timing of
withdrawal bleeding a guide to endometrial safety during
28 Burch D, Biesheuvel E, Smith S, et al. Can endometrial pro-
tection be inferred from the bleeding pattern on combined
cyclical hormonal replacement therapy. Maturitas 2000;34:
159–60.
29 Obel EB, Munk-Jensen N, Svenstrup B, et al. A two-year,
double-blind controlled study of the clinical effect of conju-
gated and sequential postmenopausal replacement therapy
and steroid metabolism during treatment. Maturitas 1993;
16:13–21.
30 Mattsson LA, Culberg G, Samsioe G. Evaluation of a con-