Clinical and microbiological features of Haemophilus influenzae vulvovaginitis in young girls

R A Cox, M P E Slack

Aims: To define the clinical and microbiological features of vulvovaginitis in prepubertal girls whose genital swabs yielded Haemophilus influenzae.

Methods: Laboratory based study and retrospective collection of clinical data from the requesting doctors.

Results: Thirty eight isolates of non-capsulate Haemophilus influenzae and one of H parainfluenzae were isolated from 32 girls aged 18 months to 11 years. No other pathogens, such as β-haemolytic streptococci or yeasts, were present with H influenzae. The most common biotype was biotype II, comprising 57% of the 26 isolates biotyped. Six children had more than one episode of vulvovaginitis caused by H influenzae and a total of 14 children had recurrent vaginal symptoms.

Conclusion: Children who have H influenzae vulvovaginitis are at risk of recurrent symptoms. Biotype II is the one most commonly associated with this condition.

PATIENTS AND METHODS

Microbiological methods

Vulval and vaginal secretions were obtained from girls who complained of vaginal irritation or discharge and attended their general practitioners, paediatric outpatient clinics, or a paediatric gynaecologist. Swabs were placed in Amies transport medium with charcoal (Sterilin, Stone, Staffordshire, UK). They were sent via the laboratory transport system (ambient temperature, but same day delivery). Specimens comprised 57% of the 26 isolates biotyped. Six children had more than one episode of vulvovaginitis caused by H influenzae and a total of 14 children had recurrent vaginal symptoms.

Isolates of H influenzae, cultured from vulval and vaginal swabs from girls aged 14 years and under, were collected over a three year period between 1997 and 2000. At the end of each year, a letter was sent to every doctor whose patient’s specimen had yielded H influenzae, requesting information on the patient’s treatment (antibiotic course and duration) and clinical outcome.

RESULTS

During the study period, the microbiology laboratory examined 1016 vulval and vaginal swabs from 814 girls aged 14 years or less. Thirty eight isolates of H influenzae and one of
**Table 1** Biotypes of *Haemophilus*

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>H influenzae</em> (n=25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>11.5</td>
</tr>
<tr>
<td>II</td>
<td>15</td>
<td>57</td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>7.6</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>3.8</td>
</tr>
<tr>
<td>V</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td><em>H parainfluenzae</em> II</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Not typed</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

*H parainfluenzae* were obtained from 32 children. All were non-capsulate. The ages ranged from 1.5 to 11 years, with a median of 4 years and mean of 4.9 years. Five children had two episodes of haemophilus vulvovaginitis and one had three. Of the 26 isolates that were biotyped, 15 were biotype II (14 episodes of haemophilus vulvovaginitis and one had three. Of the 26 isolates that were biotyped, 15 were biotype II (14 *H influenzae*, one *H parainfluenzae*). Table 1 shows the distribution of biotypes.

Four isolates from four girls were resistant to amoxicillin and β-lactamase positive (table 2). Three of these girls suffered from recurrent *H influenzae* vulvovaginitis. For two children the first isolate was sensitive to amoxicillin, but the second was resistant. Both had received amoxicillin as treatment for their initial infections. Two children had amoxicillin resistant *H influenzae* isolated from a single episode of vulvovaginitis. It is not known whether they had recently received amoxicillin as empirical treatment for some other infection.

In this small group, amoxicillin resistance was not apparently associated with biotype because two isolates were not typed, one was biotype II, and one was biotype V.

Seven isolates were resistant to trimethoprim. Six isolates from five children were resistant to trimethoprim only and one was resistant to both amoxicillin and trimethoprim. Four of the isolates were biotype II, one was biotype V, one biotype I, and one was not typed.

There were two clarithromycin resistant isolates: the single *H parainfluenzae* isolate, which was biotype II, and one *H influenzae* isolate that was not typed.

None of the strains was resistant to cefuroxime.

No other recognised pathogens such as group A streptococci or candida were present together with *H influenzae*. (*Neisseria gonorrhoeae* was not isolated from a prepubertal child during the three year study.) No threadworms were detected on the swabs (no perianal samples were received from these children). Eight isolates were accompanied by mixed anaerobic flora. Five of these isolates were biotyped. Four were biotype II and one was biotype V.

All the children investigated had presented with vaginal discharge and/or itching. Twenty five children were investigated and managed by their general practitioners. Six were seen by a consultant paediatric gynaecologist and one by a consultant paediatrician. These children were managed jointly by a specialist and their general practitioner. Treatment information was available for 29 of the 32 children. They received a variety of antibiotics (table 3). Fifteen children received a single course of antibiotic, but for 11, treatment was either changed or a repeat course of the same antibiotic was given. *Candida* spp were not isolated from the five post-treatment swabs received.

Five children had more than one episode of *H influenzae* vulvovaginitis during the three year study period. In addition, an 8 year old child, who was referred to the paediatric gynaecologist from a general practitioner outside the laboratory’s area, was said to have had a previous episode of *H influenzae* vulvovaginitis. Two children with recurrent infection had different biotypes on each occasion (indicating reinfection, rather than relapse) and one had the same biotype with the same antibiotic sensitivity pattern (indicating failure to eradicate the original infecting organism). For two children, biotyping results were not available for all the isolates.

A further eight children had recurrent episodes of vulvovaginitis, but in only one case was a recognised pathogen isolated. This was a 6 year old girl who had a group A streptococcal vaginitis nine months after her *H influenzae* infection. Thus, almost half of the children studied had recurrent symptoms.

**DISCUSSION**

There are many conditions that can give rise to vaginal irritation and discharge in prepubertal girls. These range from the physiological—leucorrhoea of the newborn and menarche—to the pathological, including congenital malformations, tumours, endocrine abnormalities, and skin diseases.

Viral, bacterial, and parasitic infections are common causes of juvenile vulvovaginitis. The vagina of the prepubertal girl lacks the oestrogenic influence present in the sexually mature woman and has a different vaginal flora, pH, and cellular structure. This results in a different spectrum of both pathogenic and commensal flora.

“Nearly half (14 of 32) of the children in this small study had a recurrence of symptoms”

Several studies of infectious causes of juvenile vulvovaginitis have been published, either comparing symptomatic subjects with age matched controls, or attempting to identify putative pathogens in symptomatic children. No specific infective cause was identified in most of the children. When no specific pathogen is isolated, the condition is often referred to as “non-specific vaginitis”. It has been suggested that inflammation of the vulva and lower vagina may be caused by a mixture of faecal flora resulting from poor perineal hygiene.

Most of these studies found that group A β haemolytic streptococci were the most common cause of juvenile vulvovaginitis, followed by *H influenzae*. In a large study from Liverpool, *H influenzae* was a more common cause of this complaint than β haemolytic streptococci.
Haemophilus influenzae is an important bacterial pathogen in children. Since the introduction of the Hib vaccine in the UK in 1992, there has been renewed interest in disease caused by non-capsulate strains of H. influenzae. They are part of the normal flora of the nasopharynx, but only occasionally form part of the vaginal flora in prepubertal girls. They are common causes of otitis media, pneumonia, and sinusitis. They cause a rare, but often fatal neonatal sepsis syndrome, associated with preterm birth.

The association between H. influenzae and prepubertal vulvovaginitis was first highlighted by MacFarlane in 1987. Because most young girls with vaginal discharge are seen by their general practitioners, there have been few studies of the specific characteristics of this infection. In addition, H. influenzae is fastidious in its growth requirements and laboratories may not isolate it unless they include appropriate culture medium for genital swabs received for young girls.

Although our study was incomplete in that only 26 of 39 isolates were available for biotyping, all were non-capsulate and biotype II was the most common strain identified. It was present in over half of the episodes studied. MacFarlane reported that most strains isolated in his study were capsulate, but qualified this by indicating that the slide agglutination test he used for capsule typing may have been unreliable. MacFarlane also found that biotype II was the most common biotype associated with juvenile vulvovaginitis and accounted for two thirds of the isolates tested.

Nearly half (14 of 32) of the children in this small study had a recurrence of symptoms. Six children had more than one episode of H. influenzae vulvovaginitis during the period of observation (had the group been followed for longer this figure would have been even higher). Biotyping indicated that at least some of these were reinfections because different biotypes were identified on different occasions. Whether relapse or reinfection is a feature of particular strains of H. influenzae is unknown. We were unable to implicate a particular biotype in those children who had more than one infection.

"Advice on hygiene and behaviour may be an important strategy to prevent recurrences"  

Clinicians used a variety of antibiotics (some inappropriate) to treat the children's symptoms. The small number of children in our study makes it difficult to draw firm conclusions about the efficacy of treatment, but children treated with inappropriate antibiotics (metronidazole and miconazole) seemed to fare no worse than children treated with more appropriate ones (amoxicillin, co-amoxiclav, and trimethoprim).

Vulvovaginitis caused by group A β haemolytic streptococci is thought to result from digital transmission from the nasopharynx to the vagina. Because non-capsulate H. influenzae is also a commensal organism in the nasopharynx, it is possible that it is also transferred to the vagina in this way. Advice on hygiene and behaviour may be an important strategy to prevent recurrences.

Further studies on recurrent infections, seasonality and concurrent infection elsewhere in the body (similar to those undertaken with group A β haemolytic streptococci) are needed.

There have been several studies of non-capsulate H. influenzae that have attempted to correlate biotype with virulence, site of disease, and antibiogram. Long et al studied nearly 500 isolates of H. influenzae from children with invasive H. influenzae disease and compared these with isolates from children with H. influenzae respiratory disease and from well children. Invasive disease was predominantly associated with serotypable strains, which were usually biotype I. Respiratory isolates from children with H. influenzae respiratory infection and acute otitis media were frequently non-serotypable, biotype I strains. Respi- 

### References

11. **Slack MPE, Crook DWM, Jordens JZ, et al. Molecular and epidemiological aspects of Haemophilus influenzae infection. PHL Microbiology Digest 1993;10:122–8.**

---

**Take home messages**

- *Haemophilus influenzae* is a common cause of vulvovaginitis in prepubertal girls.
- Girls with *H influenzae* vulvovaginitis are at risk of recurrent symptoms.
- Biotype II is the most common biotype associated with infection at this site.
- Antibiotic resistance was not a problem in the clinical management of children, but amoxicillin resistance was seen in two children after treatment.


New JCP online submission and review system

We are pleased to inform authors and reviewers of the new online submission and review system at JCP. Developed by High-Wire Press (CA, USA), Bench Press is a fully integrated electronic system that utilises the web to allow rapid and efficient submission of manuscripts. It also allows the peer review process to be conducted entirely online. We are one of the first journals in the BMJ Special Journals group to go online in this way. The aim, apart from saving trees, is to speed up the often frustratingly slow process (for both authors and editors) from submission to publication. Many reviewers might appreciate this too.

Authors may submit their manuscript in any standard word processing software. Acceptable standard graphic formats include: jpeg, tiff, gif, and eps. The text and graphic files are automatically converted to PDF for ease of distribution and reviewing purposes. Authors are asked to approve their submission before it formally enters the reviewing process. On approval by the authors, the submission is passed to the editor and/or reviewers via the web. All transactions are secure.

To access the system click on “SUBMIT YOUR MANUSCRIPT HERE” on the JCP homepage: HYPERLINK http://www.jclinpath.com, or you can access Bench Press directly at HYPERLINK http://submit-jcp.bmjjournals.com.

We are very excited with this new development and would encourage authors and reviewers to use the online system whenever possible. As editors, we will use it all the time, the up side being lack of need to travel to the editorial office to deal with papers, the down side having no more excuses to postpone decisions on papers because we are “at a meeting”!

The system is very easy to use and should be a big improvement on the current peer review process. Full instructions can be found on Bench Press http://submit-jcp.bmjjournals.com and JCP online at http://www.jclinpath.com. Please contact Natalie Davies, Project Manager, HYPERLINK mailto:ndavies@bmjgroup.com for any further information.

H Holzel, P van Diest