Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer

C Costa, R Soares, J S Reis-Filho, D Leitão, I Amendoeira, F C Schmitt

ORIGINAL ARTICLE

Aims: Cyclo-oxygenases 1 and 2 (COX-1 and COX-2) are key enzymes in prostaglandin biosynthesis. COX-2 is induced by a wide variety of stimuli, and present during inflammation. COX-2 overexpression has been observed in colon, head and neck, lung, prostate, stomach, and breast cancer. In colon and gastric cancer, COX-2 expression was associated with angiogenesis. The aim of this study was to determine the relation between COX-2 expression and angiogenesis in breast cancer, and to correlate the expression of this enzyme with classic clinicopathological parameters.

Methods: COX-2 expression was investigated by immunohistochemistry and western blotting analysis. The expression of COX-2 was then related to age, histological grade, nodal status, oestrogen receptor status, p53 expression, erb-B2 overexpression, mitotic counts, MIB-1 labelling index, apoptotic index, sialyl-Tn expression, transforming growth factor α expression, microvessel density, and disease free survival in 46 patients with invasive ductal breast carcinoma.

Results: By means of immunohistochemistry, COX-2 expression was detected in eight of the 46 carcinomas studied. Western blotting showed COX-2 protein expression in the same breast tumours, but not in normal adjacent tissues. The density of microvessels immunostained with anti-F-VIII related antigen was significantly higher in patients with COX-2 expression than in those without expression (p = 0.03). In addition, COX-2 was significantly associated with the presence of sialyl-Tn expression (p = 0.02), lymph node metastasis (p = 0.03), a high apoptotic index (p = 0.03), and a short disease free survival (p = 0.03) in univariate analyses.

Conclusions: These data suggest that COX-2 expression is associated with angiogenesis, lymph node metastasis, and apoptosis in human breast cancer. Moreover, these results warrant further studies with larger series of patients to confirm the association with short disease free survival in patients with breast cancer.

Abbreviations: COX, cyclo-oxygenase; ER, oestrogen receptor; F-VIII, factor VIII related antigen; HPF, high power field; STn, sialyl Tn; TGF-α, transforming growth factor α; VEGF, vascular endothelial growth factor.
between COX-2 overexpression and angiogenesis has been demonstrated in two types of cancer—colorectal and gastric cancer. Following antigen retrieval by means of pepsin digestion, at room temperature for 30 minutes. Oestrogen receptor (ER) (Dako-patts, Glostrup, Denmark), p53 (Immunotech, Marseille, France), and MIB-1 (Novocasta, Newcastle, UK) immunostainings were performed, preceded by antigen retrieval with incubation in 10mM citrate buffer for 7.5 minutes at 750 W (domestic microwave), in a thermosteristant container. Distilled water and buffer were added every 1.5 minutes to the container to prevent drying during the incubation process. Immunostaining for c-erbB2 (Dakopatts), transforming growth factor α (TGF-α) (Serotec, Oxford, UK), and sialyl Tn (STn; Dakopatts) was carried out with no previous antigen retrieval step. Induced epitope retrieval using a target retrieval solution was used for COX-2. The slides were treated with 3% peroxide (H₂O₂), in methanol for 10 minutes to quench the endogenous peroxidase activity. ER, p53, c-erbB2, STn, TGF-α, and MIB-1 immunostaining was carried out as described previously. Polyclonal antibodies for F-VIII (Dakopatts) and COX-2 (Santa Cruz Biotechnology, San Diego, California, USA) were applied to the sections at a dilution of 1/150 (with a 30 minute incubation at room temperature) and 1/10 with an overnight incubation at 4°C, respectively. The anti-COX-2 antibody is specific for COX-2, and does not crossreact with COX-1; it recognises an epitope mapping to the C-terminus of human COX-2.

NEGATIVE controls were carried out by omission of the primary antibody. As positive controls, sections from previously studied cases of breast cancer known to express ER, p53, MIB-1, c-erbB2, TGF-α, and STn were used. Sections from highly angiogenic breast carcinomas and colon carcinomas known to express COX-2 were used as positive controls for F-VIII and COX-2, respectively.

Evaluation of the immunohistochemical data

ER, p53, TGF-α, c-erbB2, MIB-1, and STn were evaluated as described previously. COX-2 positivity was indicated by the presence of brown cytoplasmic staining. Immunoreactivity was evaluated in epithelial cells, in neighbouring stroma, and in endothelial cells. All cases with any unequivocal staining of the cytoplasm of neoplastic cells for COX-2 were considered positive. Angiogenesis was evaluated by immunohistochemical staining of intratumoral microvessels for F-VIII. Any positively stained single cell, or cluster of cells, clearly separated from adjacent clusters and background, with or without lumen, was considered an individual vessel, as recommended in previous studies. Areas of fibrosis, necrosis, and inflammation, in addition to vessels with a muscle wall, were excluded from the counting. Microvessels were counted in the three most vascularised areas in a 200x field (0.74 mm²) by four observers simultaneously. Because there was no significant difference between the highest count and the average vessel count in each case, we used the results obtained in the average vessel count in each case.

Western blotting analysis

Total protein was extracted from frozen tissues using the TriPure isolation reagent (Boehringer, Mannheim, Germany) and measured by spectrophotometry. Equal amounts of protein were denatured by boiling for two minutes, and then electrophoresed in a 10% polyacrylamide gel with a 5% stacking gel. After electrophoresis, proteins were electrotransferred to a Hybond nitrocellulose membrane (Amersham, Little Chalfont, Buckinghamshire, UK). Membranes were incubated with antibodies against COX-2 (Santa Cruz Biotechnology) and β actin (Santa Cruz Biotechnology) at a 1/2000 dilution overnight at 4°C. After several washing cycles the membranes were incubated with horseradish peroxidase conjugated secondary antibody at a 1/2000 dilution, for 45 minutes at room temperature. Western blotting protein products were visualised using the ECL chemiluminescence system (Amer sham), after membrane exposure to an autoradiography film.
(Hyperfilm; Amersham). The highly invasive breast cancer cell line Hs578T, which is known to express COX-2, was used as a positive control and β-actin was used as the internal control.

Statistical analysis

Statistical analysis was carried out using a Statview program. Statistical differences between COX-2 expression and histological grade, node status, TGF-α expression, ER content, p53 expression, c-erbB2 expression, and Sialyl-Tn expression were calculated using the χ² test. Analysis of variance (ANOVA) with Yates correction was used to compare COX-2 expression and mean values for age, proliferative index, mitotic counts, apoptotic index, and microvessel density. A value of p < 0.05 was considered significant. As a further validation of the apoptotic index and mitotic counts, we compared these two continuous variables with the MIB-1 proliferation index using Spearman’s rank correlation.

To perform the disease free survival analysis, patient groups were defined according to positive or negative immunoreactivity for COX-2 and were compared for disease free survival using the Cox-Mantel non-parametric test. The test was performed unilaterally for all of the comparisons; the null hypothesis was that both groups were equal in terms of time under evaluation, and the alternative hypothesis was that one of the groups evolved better than the other.

RESULTS

Immunohistochemical analysis of breast tumour tissues for COX-2

Immunohistochemical staining of the formalin fixed, paraffin wax embedded tumour tissue revealed COX-2 cytoplasmic immunoreactivity in eight of the 46 patients with invasive ductal breast carcinoma studied. COX-2 expression was restricted to tumour cells in all the positive samples (fig 1A). Neighbouring stromal cells, such as fibroblasts and endothelial cells, showed no immunoreactivity for COX-2. Table 1 summarises the associations between COX-2 expression in

![Figure 1](https://www.jclinpath.com) Immunohistochemical analysis of breast tumour tissue using antibodies to [A] cyclo-oxygenase 2 and [B] factor VIII related antigen to evaluate angiogenesis.

<table>
<thead>
<tr>
<th>Clinicopathological features</th>
<th>No. of cases</th>
<th>Positive</th>
<th>Negative</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years (mean [SE])</td>
<td>46</td>
<td>49.8 (5.8)</td>
<td>57.4 (2.2)</td>
<td>0.82</td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>0/8</td>
<td>8/8</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>19</td>
<td>3/19</td>
<td>16/19</td>
<td>0.16</td>
</tr>
<tr>
<td>III</td>
<td>16</td>
<td>3/16</td>
<td>11/16</td>
<td></td>
</tr>
<tr>
<td>Nodal status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>22</td>
<td>7/22</td>
<td>15/22</td>
<td>0.03</td>
</tr>
<tr>
<td>Negative</td>
<td>20</td>
<td>1/20</td>
<td>19/20</td>
<td></td>
</tr>
<tr>
<td>Transforming growth factor α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>34</td>
<td>7/34</td>
<td>27/34</td>
<td>0.38</td>
</tr>
<tr>
<td>Negative</td>
<td>11</td>
<td>1/11</td>
<td>10/11</td>
<td></td>
</tr>
<tr>
<td>Oestrogen receptor content</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>27</td>
<td>4/27</td>
<td>23/27</td>
<td>0.46</td>
</tr>
<tr>
<td>Negative</td>
<td>17</td>
<td>4/17</td>
<td>13/17</td>
<td></td>
</tr>
<tr>
<td>p53 expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>20</td>
<td>2/20</td>
<td>18/20</td>
<td>0.82</td>
</tr>
<tr>
<td>Negative</td>
<td>23</td>
<td>4/23</td>
<td>19/23</td>
<td></td>
</tr>
<tr>
<td>c-erbB2 expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>11</td>
<td>3/11</td>
<td>8/11</td>
<td>0.39</td>
</tr>
<tr>
<td>Negative</td>
<td>32</td>
<td>5/32</td>
<td>27/32</td>
<td></td>
</tr>
<tr>
<td>Sialyl-Tn expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>14</td>
<td>6/14</td>
<td>8/14</td>
<td>0.02</td>
</tr>
<tr>
<td>Negative</td>
<td>21</td>
<td>2/21</td>
<td>19/21</td>
<td></td>
</tr>
<tr>
<td>Microvessel count (mean [SE])</td>
<td>46</td>
<td>66.6 (9.0)</td>
<td>44.6 (4.3)</td>
<td>0.03</td>
</tr>
<tr>
<td>Apoptotic index (mean [SE])</td>
<td>43</td>
<td>7.2 (1.3)</td>
<td>3.9 (0.5)</td>
<td>0.03</td>
</tr>
<tr>
<td>Mitotic count (mean [SE])</td>
<td>43</td>
<td>17.7 (2.7)</td>
<td>17.7 (2.7)</td>
<td>0.99</td>
</tr>
<tr>
<td>MIB-1 expression (mean [SE])</td>
<td>35</td>
<td>22.2 (4.8)</td>
<td>24.1 (4.2)</td>
<td>0.88</td>
</tr>
</tbody>
</table>
malignant cells and other clinicopathological features studied. Tumour expression of COX-2 was significantly associated with microvessels count evaluated by F-VIII expression (table 1; figs 1B,2). COX-2 expression was also significantly associated with lymph node metastases, apoptotic index, and STh expression in neoplastic cells. No significant relation was found between COX-2 immunostaining in tumour cells and the other clinicopathological characteristics analysed (table 1).

Western blotting analysis of COX-2 in breast tumour tissues and matched normal tissues
COX-2 expression was also analysed by western blotting in tumour specimens from 19 of the invasive ductal breast carcinoma frozen samples and two matched normal breast tissue samples. COX-2 expression was detected in eight of the 19 cases studied. In all cases in which COX-2 was detected by western blotting, immunohistochemistry was also positive for COX-2. In normal tissue there was no expression of COX-2. Figure 3 illustrates the western blotting results from a tumour and its matched normal tissue.

Mitotic counts and apoptotic index
The mean (SE) values of the mitotic counts in 10 HPFs and the apoptotic index in each 1000 cells were 17.74 (2.30) and 4.51(0.57), respectively. There was a highly significant correlation between mitotic counts and apoptotic index (p < 0.0001). In addition, an equally strong significant association was found between the mitotic index and the MIB-1 proliferation index (p < 0.0001).

COX-2 positive cases showed a significantly higher apoptotic index (p = 0.031); however, no association was found between mitotic counts or MIB-1 and COX-2 expression (p = 0.995 and p = 0.883, respectively).

Disease free survival analysis
For the disease free survival analysis, we only included the 26 patients who attained a minimum 24 month follow up period. The relation between COX-2 expression and disease free survival is shown using Kaplan-Meier survival curves (fig 4). Using the log rank Cox-Mantel test, patients with breast cancer whose tumours were COX-2 positive had a significantly shorter disease free survival (p = 0.0325).

DISCUSSION
Our study revealed that the COX-2 protein was expressed in cases of human invasive ductal breast carcinoma, analysed by both immunohistochemistry and western blotting, whereas the COX-2 protein was undetectable in normal breast tissue. These results are in accordance with the data reported by Parrett and colleagues,21,22 and Hwang et al.23 Both these studies, which used different analytical methods, showed increased COX-2 expression in human breast carcinomas. Our figures (17.4% of the cases) were similar to those reported by Parrett et al.,24 although they were lower than those described by Huang et al.,25 who showed COX-2 expression in 68.18% of breast cancer samples.

Although the role of COX-2 during tumorigenesis is not yet well defined, an association between tumour COX-2 expression and angiogenic status was seen in our study. Angiogenesis is required during tumorigenesis for the supply of oxygen and nutrients. At the same time, angiogenesis helps tumour cells to migrate through blood vessels and metastasise to distant organs. In our study, the expression of COX-2 was only seen in tumour cells and not in stromal or endothelial cells. However, the expression of COX-2 in tumour cells was related to increased endothelial cell proliferation. COX-2 is one of the enzymes that catalyses the synthesis of prostaglandins, which are local hormones mainly involved in the inflammatory response. Recently, several reports have suggested a role for prostaglandins in angiogenesis. Arakawa et al showed that ulcer healing was accelerated when prostaglandins are synthesised by COX-2, but not by COX-1.26 These findings emphasise the putative stimulation of angiogenesis by a COX-2-dependent mechanism. Accordingly, other studies suggest that prostaglandins exhibit vasoactive and mitogenic properties and are important mediators of increased vascular
permeability in the endometrium. COX-2 has also been proposed to reduce the adherence of tumour cells to the extracellular matrix, promoting angiogenesis and the development of metastasis. Similarly, COX-2 overexpression has been seen in several pathological states, such as cancer and rheumatoid arthritis, in which angiogenesis is strongly required. All these findings are in agreement with our results, suggesting that COX-2 may also play a role in angiogenesis. The involvement of COX-2 in angiogenesis has already been reported in other cancers, such as colorectal and gastric cancer. However, to our knowledge this is the first study to suggest that COX-2 might also play a role in angiogenesis in breast cancer.

Despite the various reports of the involvement of COX-2 in angiogenesis, little is known with regard to its mechanism. Tsujii et al showed that tumours expressing COX-2 often produce VEGF and basic fibroblast growth factor, two growth factors associated with angiogenesis. VEGF is a specific endothelial cell promoter because it acts by binding to its receptors (VEGFR-I and VEGFR-II) that exist in the cytoplasmic membrane of endothelial cells. VEGF is also called vascular permeability factor because of its ability to increase vessel permeability, which is important during both angiogenesis and inflammation processes. Because COX-2 and its products (prostaglandins) are mainly regarded as inflammatory factors, it is probable that they stimulate VEGF to induce permeability. COX-2 is overexpressed in several cancer types and it seems to regulate angiogenesis; therefore, the use of COX inhibitors (such as non-steroidal anti-inflammatory drugs or preferentially specific COX-2 inhibitors) might be useful in antiangiogenic treatment.

“We know this is the first study to suggest that cyclooxygenase 2 might also play a role in angiogenesis in breast cancer.”

We found no significant association between COX-2 expression and age, tumour grade, TGF-α, ER receptor content, p53, c-erbB2, or MIB-1. Despite the observations by Lui and Rose in two human breast cancer cell lines, where COX-2 expression is regulated by hormonal status, no significant association between COX-2 and ER status was found in our series. This might be because of the low sensitivity of the immunohistochemical analysis performed or because of the fact that there are two ERs: ERα and ERβ. In our study, we only analysed ERα; thus, our results may have been an underestimation. Although COX-2 is an inflammatory mediator, no association was found between COX-2 expression and tumour inflammatory infiltration (data not shown). Sawaoka et al, studying normal gastric epithelial cells, showed that COX-2 was induced by TGF-α and thereafter enhanced cell proliferation. In a previous study, we found that TGF-α was present in 75.1% of the breast cancer cases studied and was associated significantly with angiogenesis. However, in this study we found no association between TGF-α and COX-2.

Despite the fact that COX-2 positive cases did not exhibit higher proliferative indices, as evaluated both by MIB-1 immunoeexpression and mitotic counting, we found a strong association between COX-2 expression and the apoptotic index. These findings provide further evidence for the putative role of COX-2 in the control of apoptosis in neoplastic cells of several types of human cancer, including human breast cancer cells.

In our present study, we also found an association between COX-2 expression, lymph node status, and STn expression. STn is a simple mucin-type carbohydrate antigen, which is also associated with lymph node metastases, as described previously by our group.

We found a significant association between COX-2 expression and a reduced disease free survival of patients with breast cancer in univariate analysis. In view of the small number of patients included in our study, these findings warrant larger studies with multivariate analysis to clarify the association of COX-2 and poor prognosis in patients with breast cancer.

In conclusion, we found a significant association between COX-2 expression, microvessel density, apoptotic index, STn expression, and lymph node status. These findings could indicate that COX-2 expression in human breast cancer might be a late event in tumour progression and not involved in tumourigenesis.

Further studies with larger series of patients are needed to confirm the association with short disease free survival in patients with breast cancer.

Take home messages

- Cyclooxygenase 2 (COX-2) expression appears to be associated with angiogenesis, lymph node metastasis, and apoptosis in human breast cancer.
- However, our results indicate that COX-2 expression in human breast cancer might be a late event in tumour progression and not involved in tumourigenesis.
- Further studies with larger series of patients are needed to confirm the association with short disease free survival in patients with breast cancer.

Authors’ affiliations

C Costa, J S Reis-Filho, D Leitão, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias S/N, 4200-Porto, Portugal

R Soares, Molecular Oncology Unit, Department of Pathology, Instituto Português de Oncologia do Porto, 4200-Porto, Portugal

I Amendoeira, Department of Pathology, Hospital de São João, 4200-Porto, Portugal

REFERENCES

We are pleased to inform authors and reviewers of the new online submission and review system at JCP. Developed by High-Wire Press (CA, USA), Bench Press is a fully integrated electronic system that utilises the web to allow rapid and efficient submission of manuscripts. It also allows the peer review process to be conducted entirely online. We are one of the first journals in the BMJ Special Journals group to go online in this way. The aim, apart from saving trees, is to speed up the often frustrating (for both authors and editors) from submission to publication. Many reviewers might appreciate this too.

The system is very easy to use and should be a big improvement on the current peer review process. Full instructions can be found on Bench Press http://submit-jcp.bmjjournals.com and JCP online at http://www.jclinpath.com. Please contact Natalie Davies, Project Manager, HYPERLINK mailto:ndavies@bmjgroup.com for any further information.

H Holzel, P van Diest

New JCP online submission and review system

www.jclinpath.com