Metastasis of solid tumours in bone marrow: a study from Kashmir, India

Between 1935 and 2001, many studies have appeared in the literature from different parts of the world on bone marrow invasion by solid tumours. After lymphoma, the primary tumours that most frequently involve the bone marrow are malignancies of the prostate, breast, lungs, thyroid, kidney, and stomach.1 Metastatic deposits of malignant melanoma have also been described.2 In many instances, primary tumours remain clinically undetected and are identified only at necropsy.3

The value of bone marrow aspiration in the diagnosis of malignant neoplasms was confirmed when four of eight cases of malignant melanoma were found to harbour tumour deposits in the bone marrow.4 This could be explained by the low incidence of gastrointestinal cancers, although it can be seen at any age; however, childhood lymphomas are mostly of high grade.

In most studies, the incidence of tumour deposits in the bone marrow was determined by direct examination of bone marrow smears because they are larger than most of the bone marrow cells. Single cells are more easily identified in the bone marrow smears because they look foreign within the normal bone marrow cells. The primary site of the malignant deposits may be extremely difficult to determine on a morphological basis only, but their origin can sometimes be inferred from their morphological appearance, especially in mucin-producing adenocarcinoma, squamous carcinoma, some adrenocarcinomas, and in many cases of metastatic neuroblastoma or melanoma.

If you have a burning desire to respond to a paper published in Journal of Clinical Pathology, why not make use of our "rapid response" option? Log on to our website (www.jclinpath.com), find the paper that interests you, and send your response via email by clicking on the "eLetters" option in the box at the top right hand corner. Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on "read eLetters" on our homepage. The editors will decide as before whether to also publish it in a future paper issue.

References


Fatal water intoxication

Water intoxication can occur in a variety of different clinical settings but is generally not well recognised in the medical literature. The condition may go unrecognised at early stages when the patient may have symptoms of confusion, disorientation, nausea, and vomiting, but also changes in mental state and psychotic symptoms. Early detection is crucial to prevent severe water intoxication, which can lead to seizures, coma, and death.

The patient reported here was a 64 year old woman with a known history of mitral valve disease and left ventricular hypertrophy. On the evening before her death, she began compulsively drinking water in vast quantities, estimated at between 30 and 40 glasses, and this was interspersed with episodes of vomiting. She became hysterical and also distressed, shouting that she had not drunk enough water. She declined medical attention but continued to drink water after she had gone to bed. She later fell asleep and died some time later.

A postmortem examination was carried out six hours later. The pituitary and adrenal glands were normal and there was no evidence of a bronchial tumour. There were bilateral pleural effusions of 200 ml on each side and the cut surfaces of the lungs (568 g and 441 g) exuded frothy pink fluid. The heart (461 g) showed evidence of mitral valve disease and left ventricular hypertrophy. Within the stomach there was 800 ml of watery fluid and the intra-abdominal organs were generally wet.

Postmortem intoxicology was negative. A sample of vitreous humour showed a sodium concentration of 92 mmol/litre (serum reference range, 132–144). Potassium, urea, and glucose were all within the serum reference ranges. Blood cortisol was raised, excluding an Addisonian crisis.

The cause of death was given as hyponatraemia as a result of acute water intoxication.

Water intoxication provokes disturbances in electrolyte balance, resulting in a rapid decrease in serum sodium concentration and eventual death. The development of acute dilutional hyponatraemia causes neurological symptoms because of the movement of water into the brain cells, in response to the fall in serum sodium concentration. These neurological symptoms worsen as the serum sodium concentration decreases, and death may occur at any serum sodium concentration below 100 mmol/litre.

R A Tosleem, N D Chowdhary
Department of Pathology, Government Medical College, Srinagar (Kashmir).

S M Kadri
Department of Microbiology, Government Medical College, Srinagar

Q A Chowdhary
Government Medical College, Srinagar

PostScript

CORRESPONDENCE

If you have a burning desire to respond to a paper published in Journal of Clinical Pathology, why not make use of our “rapid response” option? Log on to www.jclinpath.com, find the paper that interests you, and send your response via email by clicking on the “eLetters” option in the box at the top right hand corner. Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eLetters” on our homepage. The editors will decide as before whether to also publish it in a future paper issue.
extracellular osmolality. Symptoms can become apparent when the serum sodium falls below 120 mmol/litre, but are usually associated with concentrations below 110 mmol/litre. Severe symptoms occur with very low sodium concentrations of 90–105 mmol/litre. As the sodium concentration falls, the symptoms progress from confusion to drowsiness and eventually coma. However, the rate at which the sodium concentration falls is also an important factor, and the acute intake of large volumes of water over a short period of time, as occurred in this case, would have produced a rapid drop in serum sodium, which was fatal.

Postmortem serum samples are unsuitable for sodium measurement because concentrations decrease after death and there is considerable individual variation. However, vitreous sodium concentrations are stable in the early postmortem period, and the concentration in vitreous humour is similar to that found in normal serum. Studies have shown that abnormal vitreous humour sodium concentrations had corresponding antemortem abnormalities. "Self induced water intoxication is known to psychologists, but there is a paucity of information and little awareness of this life threatening problem in the professional literature." The initial symptoms associated with this condition are very similar to psychogenic polydipsia, confusion, and disorientation. If untreated, the symptoms may progress from mild confusion to acute delirium, seizures, coma, and death, as occurred in this case.

Fatal water intoxication has been described in several different clinical situations. The most common of these is psychogenic polydipsia (compulsive water drinking), which is sometimes associated with either mental illness or mental handicap. The condition has also been described in young army recruits of good health who developed hypotension after apparent overhydration following heat related injuries. The most common symptoms suffered by this group were changes in mental status, emesis, nausea, and seizures. Accidental water intoxication has been described as a result of excessive water intake after an episode of gastroenteritis, and an iatrogenic case has occurred after gastric lavage. Forced water intoxication is a recognized form of child abuse, which commonly leads to brain damage and is sometimes fatal.

In conclusion, we wish to highlight an unusual cause of death that may go unnoticed without an appropriate clinical history and relevant postmortem biochemical investigations. Both clinicians and pathologists need to be aware of this condition, which may manifest itself as a psychotic illness and go unrecognised in its early stages. Early detection is crucial to prevent fatal complications.

D J Farrell
Department of Histopathology, Torbay Hospital, Lawes Bridge, Torquay, Devon, TQ2 7AA, UK; desmond.farrell@sdh.hcwtr.swest.nhs.uk

L Bower
Department of Clinical Chemistry, Torbay Hospital

References

Salivary gland-like tumours of the breast: surgical and molecular pathology. Pia-Foschini M, Reis-Filho JS, Eusebi V, et al. J Clin Pathol 2003;56:497–506. The name of the first author should have been Foschini MP not Pia-Foschini M.

L Bower
Department of Clinical Chemistry, Torbay Hospital

CORRECTION

Full details of events to be included should be sent to Maggie Butler, Technical Editor JCP, The Cedars, 36 Queen Street, Castle Hedingham, Essex CO9 3HA, UK; email: maggie.butter2@btopenworld.com

Medicare India
6–8 April 2004, Pragati Maidan, New Delhi, India
Further details: Rob Grant, Kinex Log, 5 New Quebec Street, London WH1 7DD, UK (Tel: +44 (0) 207 723 8020; Fax: +44 (0) 207 723 8060; Email: rob.grant@kinexlog.com; Website: www.medicare-expo.com or www.kinex-log.com)