The nodular form of hepatic tuberculosis: a review with five additional new cases

W-T Huang, C-C Wang, W-j Chen, Y-F Cheng, H-L Eng

Background: Tuberculosis presenting as an isolated liver tumour, without active pulmonary or miliary tuberculosis, or other clinical evidence of tuberculosis, is distinctly rare. A greater awareness of this rare clinical entity may prevent needless surgical intervention.

Aims: To help characterise this distinctly rare presentation of tuberculosis, five new cases are presented, together with a review of the world literature. The clinical, laboratory, radiological, and pathological features of these patients are described.

Methods: Polymerase chain reaction (PCR) assay of the liver tissue was carried out in all cases to confirm an aetiological diagnosis of Mycobacterium tuberculosis infection.

Results: All five patients (44–71 years old; two women, three men) underwent surgery, and had a preoperative diagnosis of malignant hepatic neoplasm and a postoperative histological diagnosis of chronic granulomatous inflammation, suggestive of tuberculosis. None of them had a known previous history of tuberculosis. All of them were positive for M tuberculosis by PCR analysis of the liver tissue.

Conclusions: This report illustrates the difficulty in reaching a correct preoperative diagnosis. It is usually unsuspected and confused with primary or metastatic carcinoma of the liver, especially when it coexists with other malignancies. A high index of suspicion is required for diagnosis, which can be made only by histological and bacteriological studies, and PCR analysis.

Histopathological review

The pathological reports and the haematoxylin and eosin stained histological slides of the liver tissue of these five cases were reviewed. In all patients, a Ziehl-Neelsen stain for AFB, (6) evidence of coexisting systemic diseases.

Materials and methods

Case selection

We identified 31 cases of hepatic granulomatous inflammation from the files of the department of pathology, Chang Gung Memorial Hospital at Kaohsiung, Taiwan from 1987 to 2001. Among them, we identified five patients in whom a liver nodule or mass was identified on imaging studies. Clinical data were obtained from medical records that were reviewed to note the following: (1) age and sex, (2) presenting symptoms, (3) appearance of the hepatic lesion, (4) evidence of associated pulmonary disease on chest x-ray, (5) sputum analysis by smear and culture for the presence of acid fast bacilli (AFB), (6) evidence of coexisting systemic diseases.

Histopathological review

The pathological reports and the haematoxylin and eosin stained histological slides of the liver tissue of these five cases were reviewed. In all patients, a Ziehl-Neelsen stain for AFB was also performed.

PCR assay

The tissue specimens previously fixed with formaldehyde and embedded in paraffin wax were cut into 5 μm sections. The tissues were immersed and digested in 1 ml of 5% Chelex (chelatin resin; Sigma, St Louis, Missouri, USA), heated to 100°C for 15–20 minutes, and then centrifuged at 20 000×g for five minutes. The supernatant was treated with phenol, phenol/chloroform, and chloroform and then precipitated with 10 mg/ml glycerol, 3N sodium acetate, and 1 ml 100% ethanol; after 25 minutes at −70°C, the supernatant was centrifuged at 20 000×g for 30 minutes at 4°C. The fluid was discarded and the DNA pellet was dried. The final extracted DNA was resuspended in 50 μl Tris buffer at 65°C for two hours and used for PCR amplification, as described below. Mock extractions of buffer were performed and amplified to ensure that no contamination occurred.

Abbreviations: AFB, acid fast bacilli; ALP, alkaline phosphatase; CT, computed tomography; PCR, polymerase chain reaction
The nucleotide sequences, corresponding to the mycobacterial insertion of IS6110, previously described by Eisenach et al.,7 was a DNA sequence of 123 bp. In brief, a 50 μl volume of PCR reaction solution was prepared containing 26.5 μl Master mixture (Taq polymerase, deoxynucleotide, triphosphate, and MgCl2 buffer), 2 μl of each primer (5’ CCCTGCGGCTAGCGTCGG 3’ and 5’ TCGTCGCCGAGCGAGGCAGC 3’), 4.5 μl water, 10 μl specimen DNA, and 5.0 μl glycerol. The final volume was 50 μl. The amplification was carried out in a DNA thermal cycler (PCR system 9600; GeneAmp, Perkin Elmer Cetus, Wiltom, Connecticut, USA). The thermal cycling programmes comprised an initial incubation at 95°C for three minutes, followed by 30 cycles of denaturation at 94°C for one minute, annealing of primers at 68°C for one minute, and primer extension at 72°C for one minute. A final extension step was performed at 72°C for seven minutes and hold at 4°C. The product was analysed by electrophoresis on 2% agarose gels. The DNA was stained with ethidium bromide and photographed on a 312 nm ultraviolet transilluminator.

RESULTS

Clinical features

Table 1 summarises the main clinical features of these patients. The age ranged from 44 to 71 years (mean, 60.4 years). There were three men and two women. The pertinent symptoms of patients 1 and 3 were epigastralgia, with upper gastrointestinal bleeding also occurring in patient 5. Patient 2 had general malaise and body weight loss. Patients 3 and 4 were suffering from gastric cancer. Laboratory investigations showed that all patients except patient 4 showed raised alkaline phosphatase (ALP) values, with a range of 67 to 939 U/litre (normal range, 28–94 U/litre). Serum aspartate aminotransferase (normal range, 0–37 U/litre) and alanine aminotransferase (normal range, 0–40 U/litre) were normal, except in patient 3, who had mildly raised values. The chest x-rays of all patients were normal, except for patient 5, in whom a 3 cm faint nodular density in the right lower lobe was noted, although this was not seen in the subsequent chest computed tomography (CT) scans. The CT scans of the hepatic lesions of patients 1 and 5 revealed left 13.0 x 8.0 x 7.0 cm and 12.0 x 8.7 x 5.5 cm tumours, respectively, with prominent calcification (fig 1). Ultrasoundography revealed a hyperechoic mass, measuring 5.0 x 4.0 x 2.0 cm, over the left lobe of the liver in patient 2. In patient 4, ultrasonography showed multiple, small nodules scattered diffusely throughout the liver at postoperative follow up after gastric cancer surgery. A solitary 2 cm mass in hepatic segment IV of patient 3 was incidentally found during surgery for gastric cancer. The presumptive diagnosis of all cases was malignant or metastatic tumour. During surgery, other lesions in the lymph node, omentum, and spleen of patient 1; mesentery of patient 2; and peritoneal implantation of patient 2 were noted. None of our five patients had a previous history of tuberculosis, diabetes, or human immunodeficiency virus infection or other causes of immunosuppression.

Gross findings

The gross photography was only available in patients 1 and 5. Both of them showed an irregularly shaped, solid, lobulated mass with yellowish to tan discoloration (fig 2). No stellate nodule was found in the liver.

Histological and PCR findings

Microscopic examination showed that all cases except patient 3 had multiple granulomas, coalesced into a conglomerate tubercle with central caseation. Many epithelioid granulomas, with Langerhans giant cells forming early non-caseation...
tubercles, were noted around the conglomerate tubercle (fig 3). Dispersed foci of calcification in the regions of central caseous necrosis were also found in patients 1 and 5, consistent with the imaging studies. Patient 3 mainly exhibited caseation with peripheral lymphocyte, histiocyte, and Langerhans giant cell cuffing, and to a lesser extent, grouped granulomas coalescing into conglomerate tubercles. In all cases, the surrounding liver parenchyma revealed lymphocytic infiltration in the portal tracts. Ziehl-Neelsen staining of the paraffin wax embedded sections identified AFB in patient 1. In contrast, all five cases were positive for M tuberculosis by PCR analysis of the liver tissue, which identified a 123 bp DNA sequence, corresponding to the IS6110 insertion, in the electrophoresis agarose gel (fig 4).

DISCUSSION

Tuberculosis can affect the liver in many ways. Hepatic tuberculosis has been categorised as miliary, local, and biliary in the literature. The miliary form of spreading is the most common, and is thought to involve haematogenous dissemination via the hepatic artery.8–11 In 1973, Gelb et al reported 30 patients who died of miliary tuberculosis; 27 had liver involvement at necropsy.12 Some believe that hepatic tubercles are present in all cases of miliary tuberculosis.11 31 4 Active pulmonary tuberculosis might be present or not. Because of low oxygen tension in the liver, which is unfavourable for mycobacterial growth,15 the local form of hepatic tuberculosis with no clinical extrapulmonary manifestations is relatively rare. It is often found in the portal areas and may reach the liver by the portal vein. 2 It may involve the liver diffusely or focally as space occupied nodular lesions. Terry and Gunnar reported 12 cases of diffuse hepatic involvement without evidence of tubercles elsewhere.16 The biliary form, characterised by obstructive jaundice from enlarged lymph nodes compressing the common bile duct, is the least frequently found.15 17 Unlike obstructive jaundice of the biliary form, the clinical presentation of local hepatic tuberculosis has no pathognomonic feature. Abdominal pain, fever, and body weight loss are most commonly found.2 19–24 Other biochemical findings include variable degrees of anaemia, hypoalbuminaemia, and hyponatraemia.

Imaging studies frequently present a diagnostic challenge, especially in the nodular form. The CT appearance varies from a hypodense mass, with or without rim enhancement after contrast, to a heterogeneous density of the necrotic centre of bull’s eye calcification.25 26 Ultrasonography may reveal hypoechoic or rarely hyperechoic nodules.25 27 28 Abnormal lung lesions, identified in the chest x ray, were found in between 10% and 86% of patients.18 29 30 Thus, hepatic tuberculosis cannot be excluded by the absence of pulmonary
Tuberculosis presenting as an isolated tumour without clinical evidence of tuberculosis is difficult to diagnose preoperatively, and is usually unsuspected or confused with primary or metastatic carcinoma of the liver

Mycobacterial culture is often performed but positivity for the acid fast stain is low

A high index of suspicion is required for diagnosis, which until recently could only be confirmed by histological and bacteriological studies

Polymerase chain reaction analysis is a useful, additional test to confirm infection with Mycobacterium tuberculosis and was positive in all five patients tested
REFERENCES


