Ki-67 immunocytochemistry in liquid based cervical cytology: useful as an adjunctive tool?

S Sahebali, C E Depuydt, K Segers, A J Vereecken, E Van Marck, J J Bogers

Aims: To test the ability of Ki-67 to detect cytological lesions in a screening setting and its use as a surrogate marker of human papillomavirus (HPV) infection.

Methods: A study of liquid based cytology, HPV DNA testing by MY09/MY11 consensus polymerase chain reaction (PCR), type specific PCRs, and Ki-67 immunocytochemistry on a randomly selected series of 147 patients.

Results: Comparison of the number of Ki-67 immunoreactive cells/1000 cells in the different cytological groups showed that the HSIL group yielded a significantly higher mean count than did the other groups. The number of Ki-67 immunoreactive cells/1000 cells was significantly higher in HPV-16 positive samples than in samples containing infections with other high risk types. Receiver operating characteristic curves indicated a test accuracy (area under curve) of 0.68, 0.72, and 0.86 for atypical squamous cells of undetermined significance (ASCUS), low grade squamous intraepithelial lesions (LSIL), and high grade squamous intraepithelial lesions (HSIL), respectively. Thresholds for 95% sensitivity were 0.07, 0.08, and 0.15 Ki-67 immunoreactive cells/1000 cells for ASCUS, LSIL and HSIL, respectively. The threshold for 95% specificity was 1.9 Ki-67 immunoreactive cells/1000 cells.

Conclusions: Ki-67 immunocytochemistry can be applied to liquid based cytology. The accuracy and diagnostic indices of the test are good when compared with those of other techniques. As part of a panel of screening procedures, it could be used as an adjunct to liquid based cytology to identify HSIL, and as a surrogate marker of HPV-16 infection.

The causal relation between genital human papillomavirus (HPV) infection and cervical dysplasia/carcinoma is well established.1-3 HPV type 16 (HPV-16) is most frequently found in cervical squamous cell carcinoma, with more than 50% of these tumours harbouring this type.1 However, even though the prevalence of HPV infection can be as high as 60%, only 10% of infected women will develop cervical dysplasia.1

The infection of cervical cells by HPV manifests itself by changes in the function or expression of host genes, and the detection of these alterations can play a role in screening and diagnosis. The different levels of association with cancer of different HPV types presumably reflects the potency of their respective oncoproteins encoded by the E6 and E7 genes, which, by binding to host regulatory proteins, lead to degradation of the p53 tumour suppressor gene product and the inactivation of the retinoblastoma gene protein.4 These interactions cause deregulation of the cell cycle, manifested by abnormal expression of cell cycle associated proteins, such as Ki-67.5 The detection of abnormal expression can identify clinically important cases of HPV infection with risk of progression towards dysplasia and carcinoma.

Ki-67 expression is normally confined to the basal and parabasal layers of the normal cervical squamous epithelium.6 In dysplasia and carcinoma, expression extends above the basal one third of the epithelium and the number of positive cells increases.6

Over the past decade, many large prospective studies have investigated the prognostic value of Ki-67 in the outcome of cervical carcinoma.24-26 Ki-67 has been used in routine cervical pathology to assess adequate excision of cervical intraepithelial neoplasia (CIN) and to differentiate between postmenopausal atrophy and CIN.25

“...expression extends above the basal one third of the epithelium and the number of positive cells increases”
were assigned and transmitted in such a way that patient confidentiality was preserved.

Laboratory assays
Cytology
Cervical cells were collected using the Cervex-Brush® (Rovers, Oss, the Netherlands) and placed immediately in alcohol based preservative (Tripath Imaging, Burlington, North Carolina, USA). Thin layer liquid based cytology (LBC) preparations (Tripath Imaging) were made with the fully robotic AutoCyte® PREP system. From a starting volume of 1000 µl for each sample, a 200 µl aliquot was used to prepare each LBC. All slides were manually screened by cytotecnologists after intensive training in the evaluation of thin layer slides. Five percent of all LBCs, in addition to all abnormal and suspicious cases, were reviewed by senior cytotecnologists. Abnormal or dubious cases were forwarded to one of the pathologists for final diagnosis.

The cytological results were classified according to the Bethesda 1992 system, using the following classes: within normal limits (WNL), atypical squamous cells of undetermined significance (ASCUS), low grade squamous intraepithelial lesions (LSIL), high grade squamous intraepithelial lesions (HSIL), and atypical glandular cells of undetermined significance.

HPV DNA testing by PCR
As reported previously, from the remaining cell suspension of 800 µl, 400 µl was transferred to an Eppendorf tube and the cells were pelleted by centrifugation. The supernatant was discarded and the pellet resuspended in 50 µl of digestion solution (10mM Tris, 1mM EDTA, and 200 µg/ml proteinase K) and digested for three hours at 56°C. The digestion was followed by a 10 minute incubation at 95°C to inactivate the proteinase K. The DNA extracts were stored at -20°C until PCR was performed.

All samples were tested with MY09/MY11 consensus primers. Typing was performed with type specific PCRs for oncogenic types (HPV-16, HPV-18, HPV-31, HPV-33, HPV-35, HPV-39, HPV-45, HPV-51, HPV-52, HPV-56, HPV-58, HPV-59, HPV-66, and HPV-68). Samples that were positive for the consensus PCR, but negative for the type specific primers, were classified as unidentified HPV genotypes of unknown malignant potential.

Immunocytochemistry
From the remaining 400 µl cell suspension after HPV DNA detection, 50 µl was used to make thin layer preparations with the Cytospin® cytocentrifuge (ThermoShandon, Astmoor Runcorn, Cheshire, UK) on poly-L-lysine-coated glass slides. This volume was determined in a pilot study as the lowest volume with which it was possible to prepare an adequate cyto- spin. Preparations were fixed in methanol.

Immunocytochemistry was performed with the prediluted primary anti-Ki-67 antibody (Dako, Glostrup, Denmark), and the slides were incubated for 30 minutes. The secondary goat antirabbit antibody was applied for 25 minutes (1/500 dilution; Dako). Slides were treated with the streptavidin–biotin complex reagent (Dako) for 25 minutes and the reaction product was developed with 0.4% diaminobenzidine/ H2O2. All steps were performed at room temperature and slides were washed in phosphate buffered saline. Slides were counterstained with haematoxylin.

Evaluation of the immunocytochemistry was done by light microscopy. All cells in one high power field (>400), which was considered to be representative of the whole cell area, were counted, and the total amount of cells on the slide was assessed. This method was tested in a pilot study and was based on the recommendations of the Bethesda system 2001 concerning the assessment of LBC cellularity. Because there was no significant difference in results when counting one, two, or five high power fields, we decided to count one field only. All positively stained cells in the whole cell area were counted and the fraction of positive cells on the slide was calculated. This fraction was expressed as the number of positive cells/1000 cells to compare results of all samples.

Cells were considered immunopositive if the nucleus showed homogeneous or punctate staining. The staining intensity was not graded to avoid subjective interpretation. Cytoplasmic staining without nuclear staining was not considered to be positive.

Statistical analysis
Using the software package Graphpad Prism 3® (Graphpad Software, San Diego, California, USA) a Kruskal-Wallis test, followed by Dunn’s multiple comparison post-test, was performed. A p value < 0.05 was considered to be significant. All analysed data are expressed as mean number and standard error of the mean (SEM) of immunopositive cells/1000 cells.

Receiver operating characteristic (ROC) plots were generated using SPSS 10® (SPSS, Chicago, Illinois, USA) to determine the diagnostic accuracy of the Ki-67 immunocytochemistry test. Sensitivity and specificity were calculated on the premise that true negative cases were those cases of WNL without infection with a high risk HPV type. When determining the diagnostic accuracy of Ki-67 immunocytochemistry for all abnormal cytology, true positive cases were defined as those cases with abnormal cytology (ASCUS or worse) and infection with a high risk HPV type. When determining the accuracy of the test for LSIL or worse, true positive cases were defined as those cases with a diagnosis of LSIL or worse and infection with a high risk HPV type. When determining the accuracy of the test for HSIL, true positive cases were defined as those cases with a diagnosis of HSIL and infection with a high risk HPV type (all HSIL cases).

RESULTS
Ki-67 immunostaining
Immunoreactive cells showed dark brown, homogeneous or punctate staining, limited exclusively to the nucleus (fig 1). Enlarged naked nuclei that stained positive were included in the count. In some cases of severe inflammation, neutrophilic granulocytes were stained, which were not included in the count. Sometimes, immunopositive cells could be identified as (para-)basal cells, but there was also staining of intermediate or superficial cells. In several cases, clearly dysplastic cells were stained. Three smears were excluded because the cell preparation was not thin layered and cells were obscured by overlying layers.
Table 1 Study population divided by cytological diagnosis according to Bethesda classification and the number of different types of HPV infection

<table>
<thead>
<tr>
<th>Cytology</th>
<th>All HR HPVs</th>
<th>HPV-16</th>
<th>HPV unknown</th>
<th>HPV negative</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNL</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>18</td>
<td>30 (20.4)</td>
</tr>
<tr>
<td>ASCUS</td>
<td>28</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>49 (33.3)</td>
</tr>
<tr>
<td>LSI L</td>
<td>42</td>
<td>9</td>
<td>2</td>
<td>3</td>
<td>47 (32.0)</td>
</tr>
<tr>
<td>HSIL</td>
<td>20</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>20 (13.6)</td>
</tr>
<tr>
<td>AGUS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 (0.68)</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
<td>30</td>
<td>16</td>
<td>33</td>
<td>147 (100)</td>
</tr>
</tbody>
</table>

AGUS, atypical glandular cells of undetermined significance; ASCUS, atypical squamous cells of undetermined significance; HPV, human papillomavirus; HPV unknown, infections with HPV types of unknown malignant potential; HR, high risk; HSIL, high grade squamous intraepithelial lesion; LSI L, low grade squamous intraepithelial lesion; WNL, within normal limits.

Table 2 Study population presented by human papillomavirus (HPV) type, with the number of abnormal samples for each type

<table>
<thead>
<tr>
<th>HPV type</th>
<th>n (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>24 (16.3)</td>
<td>23</td>
</tr>
<tr>
<td>51</td>
<td>12 (8.2)</td>
<td>11</td>
</tr>
<tr>
<td>56</td>
<td>8 (5.4)</td>
<td>7</td>
</tr>
<tr>
<td>66</td>
<td>7 (4.8)</td>
<td>7</td>
</tr>
<tr>
<td>Other*</td>
<td>17 (11.6)</td>
<td>13</td>
</tr>
<tr>
<td>Multiple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containing HPV-16</td>
<td>6 (4.1)</td>
<td>6</td>
</tr>
<tr>
<td>31/35</td>
<td>11 (7.5)</td>
<td>11</td>
</tr>
<tr>
<td>35/66</td>
<td>7 (4.8)</td>
<td>7</td>
</tr>
<tr>
<td>Other†</td>
<td>5 (3.4)</td>
<td>5</td>
</tr>
<tr>
<td>Unknown</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Negative</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>147</td>
<td>117</td>
</tr>
</tbody>
</table>

*Types 18, 33, 35, 39, 52, and 58; †double/triple combinations of oncogenic types, other than mentioned in this table.

Cytological diagnosis

Table 1 shows the distribution of the study group into cytological categories. For each category, the numbers of high risk HPV infections, HPV-16 infections, infections with HPV types of unknown malignant potential, and HPV negative samples are given.

The mean number of cells on a cytospin slide was 26 800 (95% confidence interval, 23 500 to 30 150).

When comparing the number of Ki-67 immunoreactive cells/1000 cells between the different cytological groups, the HSIL group showed a significantly higher count (mean, 3.36; SEM, 0.86; p < 0.001) than did the other groups (fig 2). No significant differences in immunopositive counts were seen between the WNL (mean, 0.45; SEM, 0.19), ASCUS (mean, 0.62; SEM, 0.13), and LSIL (mean, 1.23; SEM, 0.48) groups.

When those abnormal samples containing HPV-16 were considered separately, the immunopositive count for HSIL (mean, 3.58; SEM, 1.08) was still double that for LSIL (mean, 1.69; SEM, 0.78), which in turn was double that of ASCUS (mean, 0.78; SEM, 0.32). There were no significant differences, possibly because of the low number of samples.

HPV typing

Table 2 shows the distribution of HPV types in our study group, in addition to the number of abnormal samples for each type. In cases with a single infection, types 16, 18, 33, 35, 39, 52, 56, and 66 were identified. In cases with multiple infections, the pairs 16/33, 16/35, 31/35, 33/35, 35/66, 39/56, and 56/66 were found, in addition to two cases of triple infection, namely: 16/31/35 and 16/33/35.

When comparing the number of Ki-67 immunoreactive cells/1000 cells between the different HPV types, HPV-16 showed a significantly higher count (mean, 2.40; SEM, 0.65) than did the other high risk HPV types (mean, 1.18; SD, 0.35) (fig 3). Within the group of other high risk types, no significant differences could be found (data not shown). For samples containing HPV types of unknown malignant potential, the Ki-67 count was lower and comparable to the count in HPV negative cases (mean, 0.46; SEM, 0.13; mean, 0.56; SEM, 0.17, respectively; p > 0.05).

Diagnostic accuracy

The overlap of the number of Ki-67 immunoreactive cells was relatively broad, both between the cytological groups and the groups of HPV types. To determine the ability of Ki-67 immunocytochemistry to discriminate between the various cytological categories, ROC plots were generated to illustrate the
The evolution of screening for cervical cancer has been considerable. Important efforts have been made to improve screening with the introduction and combination of new methods and techniques, such as liquid based cytology and HPV testing. In our present study, Ki-67 immunocytochemistry was applied to liquid based cytology, not only bypassing the disadvantages of the classic Pap smear, but also preventing bias caused by split samples because cytology, HPV DNA detection, HPV typing, and immunocytochemistry were all performed on the same sample.

In our series of 147 samples, a significantly higher number of Ki-67 immunopositive cells/1000 cells was found in the HSIL group compared with the other groups. This difference could not be explained by the fact that there were more HPV-16 infections in the HSIL group. Even if only those abnormal samples containing HPV-16 were compared, the immunopositive count for HSIL was still twice that of LSIL. This might indicate that there are other factors apart from HPV infection involved in the progression towards carcinoma in situ. These could be integration of the viral genome, viral load, factors that are not HPV related, or any combination of these.

Ki-67 immunocytochemistry might help to reduce the number of patients categorised as ASCUS, and help differentiate dysplasia from mimics such as atypical metaplasia or atrophy in diagnostically problematic cases. The diagnostic accuracy of the test for HSIL is good enough for Ki-67 immunocytochemistry to be used as an adjunct to LBC.

Hypothetically, the cytological diagnosis of ASCUS combined with a high count of Ki-67 immunopositive cells could be useful to identify those women who need follow up, because these would be cases where the cell cycle is disrupted. This hypothesis needs to be studied in a prospective situation.

The mean number of Ki-67 immunopositive cells/1000 cells for the HPV-16 group was significantly higher than that for the group of other high risk HPV types, highlighting the greater oncogenic potential of HPV-16. The count for HPV types of unknown malignant potential was lower than that for the group of other high risk HPV types, presumably because many HPV types in the first group might be low risk types.

Immunocytochemistry could be used here as a surrogate marker for HPV-16 infection. Because the detection of deregulation of the cell cycle identifies those infections at risk of progression towards dysplasia and carcinoma, this test would be more specific than HPV testing.

It would be interesting to investigate whether, in cases where false negativity of the HPV DNA test is suspected, a high Ki-67 count could help identify women at risk. In our study, there were 21 cases of ASCUS where no high risk HPV type could be identified. Ki-67 immunocytochemistry would have identified 18 cases as positive at a threshold of 0.1 Ki-67 immunopositive cells/1000 cells and four at a threshold of 1.0 Ki-67 immunopositive cells/1000 cells. Similarly, there were five cases of LSIL without an infection with a high risk HPV

Table 3 Ki-67 immunocytochemistry test performance as indicated by ROC plot

<table>
<thead>
<tr>
<th></th>
<th>ASCUS or worse</th>
<th>LSIL or worse</th>
<th>HSIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% sensitivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td>11%</td>
<td>26%</td>
<td>48%</td>
</tr>
<tr>
<td>Threshold</td>
<td>0.07</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>95% specificity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>19%</td>
<td>22%</td>
<td>42%</td>
</tr>
<tr>
<td>Threshold</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>AUC (95% CI)</td>
<td>0.68 (0.56 to 0.81)</td>
<td>0.72 (0.60 to 0.85)</td>
<td>0.86 (0.75 to 0.97)</td>
</tr>
</tbody>
</table>

At 95% sensitivity the corresponding specificity is given and vice versa. AUC (area under the curve) indicates diagnostic accuracy. Threshold values are the number of Ki-67 immunopositive cells/1000 cells. ASCUS, atypical squamous cells of undetermined significance; CIN, cervical intraepithelial neoplasia; HSIL, high grade squamous intraepithelial lesion; LSIL, low grade squamous intraepithelial lesion; ROC, receiver operating characteristic.
type. Immunocytochemistry would have identified three cases as positive at a threshold of 0.1 Ki-67 immunopositive cells/1000 cells and one at a threshold of 1.0 Ki-67 immunopositive cells/1000 cells.

“It would be interesting to investigate whether, in cases where false negativity of the human papillomavirus DNA test is suspected, a high Ki-67 count could help identify women at risk”

The overlap in immunopositive counts in the different groups could partly be explained by the fact that normal proliferating cells from the basal layer of the epithelium will regularly be seen as positive cells. Such (para-)basal cells can be recognised on the slides used for immunocytochemistry. One option is not to count those cells, but this may turn out to be time consuming and subjective. In our present study, the diagnostic accuracy of Ki-67 immunocytochemistry was found to be time consuming and subjective. In our present study, the diagnostic accuracy of Ki-67 immunocytochemistry was determined using ROC plots. This method has the advantage that it shows the full spectrum of sensitivities and specificities of a test for all possible thresholds. The accuracy is indicated by the AUC and is preferred to be > 0.70. In this study the AUCs of LSIL and HSIL were 0.72 and 0.86, respectively.

The identification of useful thresholds or cut off values is simplified by the ROC curves. The more difficult part is determining the relative cost and acceptability of errors made by the test. Another influencing factor is the prevalence of the disease, which determines the relative proportions of the two states of health that the test has to discriminate between. To illustrate the possibilities of Ki-67 immunocytochemistry, diagnostic indices are given for two possible thresholds (table 4).

The efficiency of the conventional cervical smear has never been tested in a prospective blinded study. With the introduction of new techniques in screening, several studies have focused upon the sensitivity and specificity of screening techniques (table 4). Although the methods of comparison and definition of endpoints may diverge in these studies, they give a comprehensive insight into what is known about the efficiency of these screening techniques at this time. When the data from our study are compared with those in the literature, Ki-67 immunostaining yields good results, especially with regard to the diagnosis of HSIL.

To conclude, our present study shows that Ki-67 immunostaining can be performed on LBC samples for cervical cytology and yields significantly higher numbers of immunopositive cells in HSIL and in HPV-16 positive samples. Because of the overlap in numbers between groups, the use of an appropriate cut off value is advisable. Ki-67 immunocytochemistry is an easy and fast technique, which could perform well as part of a panel of screening procedures. Particularly in smaller or less specialised laboratories, Ki-67 immunocytochemistry could be an attractive alternative to PCR or Hybrid Capture II (Digene, Gaithersburg, Maryland, USA), which require more expensive and specialised equipment. It would be relatively simple to automate the staining procedure and in time it might be possible to automate the counting of immunopositive cells. It could be used as an adjunct to LBC to identify HSIL and as a surrogate marker of HPV infection in situations where HPV detection is not available or appropriate.

Authors’ affiliations

S. Sahebali, E. Van Marck, J. J. Rogers, Department of Pathology, University of Antwerp, B-2610 Antwerp, Belgium
C. E. Depuydt, K. Segers, A. J. Vereecken, Laboratory for Clinical Pathology (Labo Riatol), B-2000 Antwerp, Belgium

REFERENCES

Hanley JA, McNeill BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982;143:29–36.

