Isolated bone marrow mycosis in a patient presenting with consumptive symptoms

The incidence of systemic mycoses is increasing as a result of the escalating number of patients who are immunocompromised because of diabetes mellitus, haemodialysis, organ and bone marrow transplants, chemotherapy for cancer, and infections with human immunodeficiency virus (HIV), in addition to the broad use of antibiotics. If such predisposing factors for fungaemia are absent, fungal infections are rarely considered in the differential diagnosis when clinical status non-specifically worsens. The diagnosis of fungal infections is based on histology, culture, epidemicological evidence, or serological tests. Histological proof of mycosis is regarded as very reliable, because the pathogenic agent can be unequivocally detected within the affected structures. Bone marrow examination might be a useful tool for the examination of cryptic infections, especially in HIV positive patients, with an overall diagnostic yield of 32% and 6% for fungal infections, respectively. However, so far, isolated bone marrow mycoses in non-neutropenic, immunocompetent patients, without evidence of fungaemia or septicaemia, have not been reported.

We report the case of a 76 year old female patient who had experienced a 13% weight loss over six months. She complained of increasing tiredness and night sweats but denied having dyspnoea or pains. Her body temperature was 37.3°C. Laboratory examination revealed a raised platelet count (582×10^9/litre), C reactive protein (154 mg/litre), and sedimentation rate (21 mm/hour), but normal parameters for electrolytes, glucose, haemoglobin A1C, serum proteins, and liver enzymes; in addition, she was negative for hepatitis (hepatitis B virus [HBV] and HCV) and HIV serology, and had a normal differential blood count. Transferrin was slightly reduced and ferritin was raised. Thus, an underlying malignant disease was suspected. Both computerised imaging of the chest and abdomen and colonoscopy were normal. A gastric biopsy revealed minimal reactive mucosal changes without Helicobacter pylori infection. An x ray of the skull showed right maxillary sinusitis. Histological examination of the nasal mucosa revealed mucocoele without evidence of fungal structures. Blood culture analyses, including specific subcultures for fungi, were negative on three different occasions. Finally, a trephine bone marrow biopsy was performed to exclude lymphoma or leukaemia. Myelopoesis was left shifted, but the remaining haemopoiesis was otherwise unremarkable. Notably, scattered within the bone marrow interstitium and around vascular structures, elongated budding yeast and pseudohyphae with branching and constriction at the septa and production of oval blastospores near the septa were histologically detected (fig 1). The microorganisms stained positively in the periodic acid Schiff reaction, but remained to a great extent negative in the Grocott stain and, therefore, were considered consistent with candida species. A minimal interstitial bone marrow necrosis close to the pseudo-hyphae' was observed (fig 1, lower left). Because the biopsy was formalin fixed, it was not submitted for culture. The angiocentricity of the mycotic elements and the discrete interstitial necrosis close to the pseudo-hyphae were notable for their pathogenicity. Nevertheless, the possibility of contamination was considered. However, the patient’s skin was clinically unremarkable and thoroughly disinfected before performing the biopsy, and the bone marrow trephine had been fixed immediately. Thus, an isolated bone marrow mycosis highly suspicious for candida species was diagnosed. Aimed serological examination revealed raised anti-Candida albicans IgG and IgM antibodies (enzyme linked immunosorbent assay; IBL, Hamburg, Germany). The patient was given amphotericin B (0.5 mg/kg) and flucytosine (150 mg/kg) intravenously for 50 days and her clinical condition gradually improved. No fungal structures could be detected in two control blood cultures.

Figure 1 Isolated bone marrow mycosis, overview (upper). Discrete interstitial bone marrow necrosis close to the mycotic elements (lower left). Budding yeast and pseudohyphae with production of oval blastospores (lower right).
bone marrow biopsies two and three months after initial diagnosis. No obvious portal of entry for this fungal infection could be elucidated. Except for the advanced age of the patient, all other risk factors for fungemia, such as an infection with HIV, HBV, or HCV, diabetes, or immunosuppression were excluded.

A trephine bone marrow biopsy can play a key role in the diagnostic investigation of patients with obscure consumptive symptoms. Isolated bone marrow mycosis can occur in immunocompetent patients even without an obvious portal of entry.

A Zimpfer
Institute of Pathology, University of Innsbruck, 6020 Innsbruck, Austria

P Pielker
Department of Internal Medicine, Helios Hospital, A-6570 Kitzbühel, Austria

G Koller
Laboratory of Microbiology Daz. J. Müst, A-6020 Innsbruck, Austria

S Dimthofer
Institute of Pathology, University of Basel, CH-4031 Switzerland

A Tzanakos
Institute of Pathology, University of Innsbruck, alexandar.tzanakos@uibk.ac.at

References

The exploding bullet

The article entitled “Health and safety at necropsy” by Julian Burton provides a detailed and well-written narrative regarding both the risks and hazards faced by professionals during postmortem examinations.1 Despite the presence of a relatively large publication base regarding this topic, important aspects are highlighted, including transmissible spongiform encephalopathies and the more modern, but potentially dangerous, advances in medical technologies. However, we would wish to clarify the issues that the author raises regarding exploding bullets. The difference between a true exploding bullet and a projectile designed to fragment on impact is one of great importance, and one that may cause confusion, as would appear to be the case within this article.

Bullets are composed of a casing containing an explosive powder charge, which, on striking the target, forces the projectile element out at speeds of up to 1500 metres/second, depending upon the ammunition and the type of gun used. The projectile causes soft tissue damage through crushing, creating a temporary cavity that contains hot gases. The tissue is compressed radially from the centre of the cavity and, depending on its elastic properties, results in tears to structures (as seen with injuries to solid abdominal viscera). The recoil of the tissues, together with the dissipated energy, causes the soft tissue to collapse inwards on itself, the resultant defect being the permanent cavity.

Expansion, or hollow point, bullets are specialised bullets designed to deform upon impact because of a collapsible space within the projectile tip. The result is that a single projectile will inflict greater overall damage to a target, allowing an increased transfer of kinetic energy compared with a standard bullet. The “benefits” include a decreased risk of ricochet because the overall penetration distance is reduced; however, some of the older ammunition failed to expand on impact as a result of pieces of clothing obstructing the cavity.

Prefragmented, or frangible, bullets are composed of a prescored outer jacket with a plastic round nose containing compressed lead shot within. The result is a controlled explosion on impact producing increased damage and less clothing-related problems. The tips, however, possess no explosive charge.

Burton describes the Winchester Black Talon SXT bullet, but erroneously includes this within the heading of exploding bullet types.1 In fact, it is, in fact, a type of expansion bullet. The tip is coated with a black lubricant and has a hollow point possessing six prescored serrations designed rapidly to open outwards upon impact. The jacket of the bullet is thickest at its tip, unlike hollow point bullets, allowing it to provide support for the claw-like petals as the bullet passes through the body. The result, in theory, is a wider permanent cavity created by a single projectile, increasing the likelihood of damage to a vital structure. The bullet was voluntarily removed from the market in 1994 and remarked as the Ranger SXT, and later as the Ranger Talon, both available only to law enforcement officers. Despite media assertions, these projectiles are not “armour piercing”, the title relating purely to a widely reported title relating purely to a widely reported

A footnote on the topic should include the mention of armour piercing incendiary round ammunition used during recent conflicts that possesses explosive points, such as the Raufoss Multipurpose Projectiles (Nammo, Norway; http://www.nammo.com), which are fired from anti-vehicle guns of varying calibre. These are not designed or produced for use against personnel. In fact, the rounds will pass through the body unexploded and are thus unlikely to be present in bodies from military conflicts. As such, it is also argued that its use in forensics does not contravene the St Petersburg Declaration. If present with a body, they are safe to handle, transport, and store. They also comply with NATO standards ensuring complete handling safety, even following vertical drops of up to 15 metres.

Finally, it is interesting to note that the Devastator bullet was developed in the 1970s for use by sky marshals, to minimise the risk of penetration of the plane fuselage when incapacitating a hijacker, a concept that appears to be returning in light of recent world events.

B Swift, GN Rutty
Division of Forensic Pathology, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, Royal Infirmary, PO Box 65 Leicester LE2 7UX, UK; b78@le.ac.uk

References

The role of mast cells in bone marrow diseases

We read the article by Horný et al describing bone marrow mast cell (MC) specific protease expression patterns in cases of systemic mastocytosis and myelodysplastic syndromes (MDS) with great interest.1 An increase in bone marrow MCs is a known feature of various haematological diseases, including myeloproliferative disorders and acquired severe aplastic anaemia (SAA). Although the MC increase is clinical and bone marrow features, and are often difficult to distinguish. Both conditions respond to immunosuppressive
treatments. Is the increase in numbers of MCs in these conditions simply an innocent consequence of haemopoietic cell injury sparing MCs? Alternatively, does it contribute to the development of severe bone marrow hypoplasia/aplasia in return? MCs have long life spans and they probably are not directly affected by the attack against the stem cell compartment, resulting in relative MC increases in the bone marrow. Low to normal stem cell factor (SCF) values have been shown in SAA, unlike the increased concentrations of other haemopoietic growth factors. This may be explained by greater dependency of MC survival and growth on SCF than other growth factors and by a negative feedback control mechanism in a population that is already supplied by an autocrine pathway. In support of this explanation, a reaction mimicking systemic mastocytosis was observed in a patient with aplastic anaemia who was treated with SCF, which was accompanied by a partial and transient haemopoietic recovery.

MCs with various enzyme expression patterns may mediate different functions in certain tissues in which they exist. These patterns may also be related to the maturational stage of MCs. Nevertheless, the predominant MC type in certain tissues may be determined by the environmental needs. We think that the coexistence of chymase expressing MCs (MC T) and chymase and tryptase expressing MCs in physiological conditions reflects a naturally occurring balance that contributes to tissue homeostasis. It is known that MCs can act as antigen presenters, in addition to being effector elements of the human immune system. Mast cells can kill target cells through the secretion of cytokines, such as tumour necrosis factor α and serine proteases, and potentially through direct cell to cell interactions. Granulocyte M1, one of the MC serine proteases, has chymase activity, and chymase is known to induce apoptosis in target cells. It has also been shown that the mast cell derived cell line P815 contains growth and differentiation factor (GDF). In contrast, tryptase, another MC protease, is a well known mitogen that could induce growth of certain cells, such as airway smooth muscle cells, fibroblasts, and neuronal cells. Tryptase expressing MCs (MC C) are often found in tissue repair sites characterised by fibrosis.

The predominance of MC C in systemic mastocytosis and patients with MDS was consistent with the typical presence of hypocellular bone marrow in these conditions. Although the authors did not provide the number of cases with hypoplastic MDS in their series, the frequency is 5–10% in the adult literature, suggesting that most, if not all, of these cases had normocellular or hyperplastic MDS. The autocrine production of SCF with increased tryptase activity might have contributed to the extremely hypercellular bone marrow in those cases. The authors also described hypocellular bone marrow associated with a focal increase in MC with strong chymase expression in a case of indolent systemic mastocytosis, which suggests a possible MC C contribution to hypercellular bone marrow. This recently showed an association between MC persistence and poor outcome in childhood SAA following immune suppression. In another study, we demonstrated long-term liquid culture grown human bone marrow mast cell cytotoxicity against human leukaemia cells, abstract 56th annual meeting of the American Society of Hematology, Philadelphia, Pennsylvania, December 6–10, 2002. Blood 2002;100:45b.

Regardless of the mechanisms involved, an increase in MCs, preferentially MC C, may contribute to the hypocellularity seen in acquired SAA and hypoplastic MDS. This explanation is also consistent with the lack of fibrosis in acquired SAA and hypoplastic MDS, which could be secondary to specific MC C increase.

O Özdemir, S Savasan
Children’s Hospital of Michigan, Division of Hematology/Oncology, Wayne State University, Detroit, Michigan 48201, USA; savasan@med.wayne.edu

References

Malignant transformation of a recurrent vestibular schwannoma

Malignant nerve sheath tumours are uncommon tumours, particularly those that affect cranial nerves. They are most frequently seen within the context of neurofibromatosis type II. Malignant transformation of benign cranial nerve sheath tumours has been reported on very few occasions.1 We report a case of malignant nerve sheath tumour arising as a recurrent tumour at the site of a previous benign schwannoma.

Tissue was received from the resection of a mass surrounding and involving the right acoustic nerve of a 53 year old man who had previously undergone resection of a tumour involving the same site. Histology from the previous resection, seven years earlier, had shown the tumour to be a benign vestibular schwannoma. Several years before the final resection, our patient had undergone a short course of radiotherapy in an attempt to reduce tumour size. He had no stigmata of neurofibromatosis type II and reported no family history of the condition.

The specimen was received as fragments of haemorrhagic tissue measuring 5 ml in aggregate. The specimen was processed routinely for histological examination, including immunohistochemistry.

Microscopic examination of the tissue showed adjacent foci characteristic of both benign and malignant nerve sheath tumours. There were areas composed of irregularly arranged spindle cells with elongated wavy contours characteristic of Antoni A type cells. These areas showed mild nuclear pleomorphism, no mitoses or necrosis were seen. The features were typical of a benign schwannoma. Other areas of tissue were very hypercellular, showing highly pleomorphic spindle cells with bizarre, hyperchromatic nuclei. Scattered giant cell foci were seen, as were zones of necrosis. There was a high mitotic count of, on average, 12 mitoses/10 high power fields in the malignant areas. The appearances were those of a malignant nerve sheath tumour. Both the benign and malignant tissue showed positive staining for S100 and vimentin.

The malignant tissue showed positive staining for Ki67, with a staining index of 20%. The benign tissue showed a Ki67 index of less than 1%.

Sections from the original tumour were reviewed. All of the sections showed typical features of a benign schwannoma with cellular and poorly cellular areas (Antoni A and B). Sections were stained for Ki67 and all were negative. The histological features were similar to the benign areas of the later tumour.

Malignant transformation of benign nerve sheath tumours is extremely unusual and reported cases are few.1 We believe that our case represents such an example.

Figure 1 Malignant area within tumour; original magnification ×20.

Figure 2 Benign area within tumour; original magnification ×10.
A previous resection from the same site showed a schwannoma with no evidence of malignancy, and similar benign areas are present in the current biopsy. This supports our assumption that this malignant tumour has arisen by transformation from the previous lesion. An issue with this case is the history of previous radiation. It has been reported that irradiation may induce neurofibrosarcoma. These cases report malignancy arising within previously normal nerves and do not describe the induction of malignancy within a previously benign tumour. Regardless of this possible aetiology, we believe that this case represents malignancy arising within previously normal benign schwannoma, and therefore presents a rare case.

J S Wilkinson, H Reid, G R Armstrong
Department of Histopathology, Hope Hospital, Stott Lane, Salford, M6 BHD, UK; helen.reid@srht.nhs.uk

References


Best practice guideline on microbiological investigation of infertility requires further review

The best practice guideline on the investigation of infertility briefly comments on appropriate microbiological investigations. However, there are several issues that we feel merit further consideration.

First, patients need to be aware of the need for blood tests (antibodies to hepatitis B surface antigen, human immunodeficiency virus, and hepatitis C) is also commented upon in the best practice guideline as a general investigation and has been similarly suggested in a recent clinical review. However, no such guideline has been issued by either the RCOG or the British Fertility Society. Nevertheless, the Human Fertilisation and Embryology Authority has set a deadline of the end of 2004 for the screening of all women/couples participating in licensed infertility treatments (in vitro fertilisation, intracytoplasmic sperm injection, donor gamete therapy) for blood borne viruses.

The wisdom of this approach is questionable for two reasons. First, if testing of subfertile couples is part of the continuum of their care from preconception to birth, then why repeat the process when pregnant women will routinely be offered blood borne virus screening (and syphilis) screening during their antenatal clinic. Second, because the absence of evidence for blood borne virus infection in patients seeking infertility advice will probably be low (possibly < 1%), where is the evidence that universal blood borne virus screening is cost effective?

We believe that tests, financial resources would be better spent on a screening programme for asymptomatic chlamydia infection in the infertile population. This should be based on a chlamydia molecular amplification test, using urine, lower vaginal swabs, or endocervical swabs, and not chlamydia serology, as has been suggested previously. Screening for chlamydia is not mentioned in the best practice guideline but is recommended by the RCOG. This is particularly important in women who will be undergoing uterine insemination as part of their fertility investigation or treatment. In general, this will mean routinely testing women less than 25 years of age. One in 10 sexually active women in England is currently thought to be infected with chlamydia. Those identified as chlamydia positive could then be offered blood borne virus screening linked to a genitourinary counselling service.

Finally, the best practice guideline makes no comment on screening for cytomegalovirus immunity. Although not routinely recommended, cytomegalovirus IgG testing should be considered both for women who receive donor gametes (sperm or oocytes) and the donors of such gametes.

R P D Cooke, D K C Chui
East Sussex Hospitals NHS Trust, Department of Medical Microbiology, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK; Richard.cooke@sht.nhs.uk

Worms and Human Disease – Second Edition


This book is the second edition of Worms and disease: a manual of medical helminthology first published in 1975. It covers this branch of parasitology in sufficient detail, especially because significant advances have been made since 1975 in immunology, molecular biology, imaging, and treatment aspects of this complex branch of medicine. The text is balanced by core information and additional descriptions without resorting to incorporate a bulky text, which would have increased costs and added little to its use as a ready reference.

It succeeds as “a practical guide in human helminthology for physicians and medical technologists”, and will find favour among postgraduate students in tropical diseases, undergraduates medical, zoological, and tropical engineering students, and technologists. However, it does not cover detailed pathology, and aspects of differential diagnosis, perhaps reserved for more specialist texts, which may not appeal to the intended wider reader base.

The reader is given adequate references, most of which are derived from the 1980 to 2000 period. The life cycles and illustrations (including maps and drawings) are useful, with commendable appendices at the end of the book (notably Appendix 2 dealing with the glos-

sary of helminth terms and Appendix 3, which covers the location of helminths in the human body).

The overall impression is that the book is a worthy addition to any medical library, and it is highly recommended for students in both clinical and laboratory medicine, workers in
Cancer Cytogenetics: Methods and Protocols


The discovery of the Philadelphia chromosomal rearrangement by Nowell and Hungerford in 1976 greatly stimulated interest in cancer cytogenetics. Once banding techniques were refined in the 1970s, the field of cancer cytogenetics blossomed and benefited tremendously from the wealth of information that was quickly amassed. Today, the field is still growing rapidly, with the advent of molecular cytogenetic techniques, such as fluorescent in situ hybridisation (FISH), multicolour FISH, spectral karyotyping, and comparative genomic hybridisation. However, there are fewer cancer cytogenetics laboratories than clinical cytogenetics laboratories because of the lower demand for this service. This is changing rapidly, as new prognostic associations are constantly being discovered. Therefore, Dr John Swansbury aimed to help those wishing to start a cancer cytogenetics service by putting together Cancer cytogenetics: methods and protocols.

Dr Swansbury wrote most of the book himself, but excellent contributions were made by some very prominent cancer cytogeneticists. The book is designed such that a chapter of background material on a certain topic is followed immediately by a technical chapter on the same topic. Chapters included most of the main areas of interest in cancer cytogenetics, such as myeloid disorders, acute lymphoblastic leukaemia, other lymphoid disorders, solid tumours, and FISH. There is also a chapter on the interpretation of cytogenetic findings, which is extremely important in malignancies. The background chapters are generally well written in a simplistic way for the novice. Cancer cytogenetics can be a very intimidating field for those not familiar with it, and Dr Swansbury does a good job of introducing it. The technical chapters are quite comprehensive and also very well written, with step by step and easy to follow protocols. There are plenty of explanations and trouble shooting suggestions for the many things that can go wrong in a cancer cytogenetics service laboratory.

One of the drawbacks of the book is that it does not put enough emphasis on the importance of prognostic FISH markers in haematological disorders and solid tumours. This is a rapidly growing field, and FISH plays an important role not only in the diagnosis of a malignancy, but also in the prognosis and response to treatment. FISH plays such a large part in the cancer cytogenetics laboratory today that it would have been useful to spend more time on its clinical applications. The book could have benefited also from a chapter on quality control and quality assurance. The service laboratory is very different from a research laboratory, and one must be sure of the results that are reported. It would be best to implement quality control and quality assurance measures right from the start, rather than to change things after a mistake has been made. Quality measures are crucial in all aspects of the cancer cytogenetics service, from culture set up and harvesting, to metaphase analysis, FISH probe validation, right through to reporting.

This book is aimed at the novice and does a very good job in getting one started with a cancer cytogenetics service. However, nothing can replace experience, and it is highly recommended that anyone starting out in the field should visit an established laboratory to see first hand what is involved. I have no hesitation in recommending this book to any cytogentist interested in expanding their service to include malignancies, or to anyone interested in starting up a cancer cytogenetics laboratory.

K Chun

Manual of Clinical Microbiology, 8th Edition


The manual of clinical microbiology, published by ASM Press, is a favourite of mine because of its immense detail and vast coverage of the field. The first edition was published in 1970, with subsequent editions following at four to six yearly intervals, and culminating in this 8th edition, which has been expanded into a two volume set with 141 chapters and 2113 pages, written by 230 authors and an international editorial board composed mainly of microbiologists from the USA.

The manual of clinical microbiology is a colossal resource, which is very well presented and beautifully illustrated. Volume I includes sections on “General issues in clinical microbiology”, “The clinical microbiology laboratory in infection detection, prevention and control”, “Diagnostic technologies in clinical microbiology”, “Bacteriology”, and “Antibacterial agents and susceptibility test methods”. Volume II includes sections on “Virology”, “Antiviral agents and susceptibility test methods”, “Mycology”, “Antifungal agents and susceptibility test methods”, “Parasitology”, and “Antiparasitic agents and susceptibility test methods”.

The chapter on “Mycobacterium: phenotypic and genotypic identification” is 24 pages long, contains 170 references, and begins with an extensive description of phenotypic identification tests for mycobacteria, with tabulated data for the various cultural and biochemical tests, along with 16 large colour photographs of macroscopic and microscopic colonial morphology. Then there is a short discussion of mycobacterial genomes, including reference to the propensity within the genome for the production of enzymes involved in the polymerase chain reaction (PCR) and restriction endonuclease analysis for detection of mycobacteria and the seminal work of Amadio Telenti. This is followed by a discussion of aspects and uses of commercially available identification probes (AccuProbe and INNO-Lipa), genome sequencing, markers for species identification within the Mycobacterium tuberculosis complex, and direct amplification tests, including the amplified M tuberculosis direct test and Amplipcr test. Following this are sections on “Strain typing” and “Quality assurance”, and “Interpretation and reporting of results”.

My only criticism is that occasional chapters are a little light. For example, the chapter on “Antifungal agents” is only 10 pages long and would have benefited from additional consideration of the relative merits of the recently expanded range of available antifungal agents.

In conclusion, I will continue to use this excellent and detailed resource in its updated form primarily as a reference text because of its comprehensive content, good organisation and therefore ease of access to relevant sections, beautiful presentation, and particularity relating to the practice of clinical microbiology.

J Kerr

Cytokines and Chemokines in Infectious Diseases Handbook


Cytokines are soluble protein molecules that facilitate communication between cells of the immune system, and are involved in the immune responses required to eliminate or localise invading infectious agents. Therefore, these molecules have obvious relevance to the study of infectious disease. This book is divided into sections on cytokines in infectious disease, Gram negative infection, Gram positive infection, mycobacterial infection, other bacterial infection, parasitic infection, viral infection, cytokines as therapeutic agents in infectious disease, and anti-cytokine based therapy in treatment of infectious disease.

Certain chapters contain comprehensive information that is well presented, such as that on cytokine patterns in severe invasive group A streptococcal infections. However, others are superficial and inadequate, such as that on cytokine gene polymorphisms and host susceptibility to infection. This chapter contains sections on tumour necrosis factor α, interleukin 1 (IL-1), IL-1ra and other cytokines. However, the possibilities for a chapter on this topic are extensive and should also include sections on at least interferon γ (IFNγ) and IL-10.

The section on cytokines in viral infections is superficial, with chapters only on viroceptors, human immunodeficiency virus (HIV) infection, and antiviral drugs. Chapters on cytokines in fungal infection and in parasitic infections are better. The section on cytokines as therapeutic agents in infectious disease contains chapters on IFNγ, IL-2 for HIV, and the use of granulocyte colony stimulating factor/granulocyte-macrophage stimulating factor. The section on anticytokines as treatment considers only septic shock, streptococcal toxic shock, and necrotising fasciitis.

Although the book could be very useful in some contexts, such as sepsis and HIV, it lacks overall depth and clarity of structure and remit.

J Kerr

Differential Diagnosis by Laboratory Medicine


What do you do when you get phoned in your laboratory office by a clinical colleague asking you what are the 10 causes of a raised urine δ aminolevulic acid? Well, you could disconnect the phone and hope they don’t call back, you could start gabbling and say you have never heard of it, or alternatively you could consult this book! This 1000 plus page text is, indeed, a treasure trove of useful laboratory facts.

The book covers thoroughly many laboratory parameters in various biological materials. Other useful features were a detailed description of medications and how these may interfere with laboratory tests, and a section listing laboratory findings in a variety of clinical conditions. I also found the tables of what sampling tubes were necessary for particular laboratory tests extremely helpful. To add to this there are tables of reference ranges for numerous laboratory tests and also conversion factors for changing conventional units to SI units.

This vademecum is written by a group of experienced laboratory workers and covers clearly many aspects of clinical biochemistry, haematology, microbiology, and immunology and is a worthy addition to any clinical laboratory’s bookshelf. I heartily recommend it.

M Crook

CALENDAR OF EVENTS

Diagnostic Histopathology of the Breast
10–14 May 2004, Hammersmith Hospital (Imperial College Faculty of Medicine), London, UK
Further details: Wolfson Conference Centre, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. (Tel: +44 (0) 20 8383 3117/3227/3245; Fax: +44 (0) 20 8383 2428; Email: wcc@ic.ac.uk)

Practical Pulmonary Pathology
27–30 July, 2004, Brompton Hospital, London, UK
Further details: Professor B Corrin, Brompton Hospital, London SW3 6NP, UK. (Tel: +44 (0)20 7351 8420; Fax: +44 (0)20 7351 8293; Email: b.corrin@ic.ac.uk)

ACP Management Course for Pathologists, 2004
8–10 September 2004, Hardwick Hall Hotel, Sedgefield, County Durham, UK
Further details: V Wood, ACP Central Office, 189 Dyke Road, Hove, East Sussex BN3 1TL, UK. (Tel: +44 (0)1273 775700; Fax: +44 (0)1273 773303; Email: valerie@pathologists.org.uk)

CORRECTION