Normal complement C4 values do not exclude hereditary angioedema
Y Karim, H Griffiths, S Deacock

This report describes a patient with hereditary angioedema (HAE) in whom complement C4 values were consistently normal. There was a family history of HAE, for which the patient had previously been screened, but in view of her normal C4 values she was deemed unaffected. However, at 10 years of age she presented with an eight month history of episodes of swelling affecting her hands and recurrent episodes of abdominal pain over the previous few months. In view of the recent clinical history of swellings and the family history of HAE, C4 and C1 inhibitor (C1inh) were measured. The C4 concentration was found to be within the normal range but the C1inh value was low (0.07 g/litre; normal range, 0.18–0.37). The patient was started on tranexamic acid and at an outpatient review three months later her episodes of swelling were occurring less often and were less severe. Although recent papers have suggested that the diagnosis of HAE can be excluded if complement C4 concentrations are normal, this case highlights the fact that C4 concentrations can be normal in this condition, and it is recommended that both C4 and C1inh concentrations should be measured to exclude HAE.

Hereditary angioedema (HAE) is a rare condition in which uncontrolled activation of the classical complement pathway causes recurrent swelling attacks. It is caused by a deficiency of C1 inhibitor (C1inh) protein. Patients may present with severe abdominal pain and diarrhoea if the swelling attacks affect the gut wall, and may go undiagnosed for many years if the diagnosis is not considered. Respiratory tract swelling may cause death by asphyxiation. Fortunately, both effective prophylactic treatment and treatment for the acute episodes of swelling are available. Recent papers have suggested that the diagnosis may be excluded if complement C4 concentrations are normal; however, we report a patient in whom C4 values were consistently normal. In view of the high morbidity and mortality associated with the condition, it is essential that cases are not missed. Therefore, it is advisable that both C4 and C1inh concentrations are measured to exclude HAE.

“In view of the high morbidity and mortality associated with the condition, it is essential that cases are not missed”

CASE REPORT
The patient, a 10 year old girl, was referred by her general practitioner with an eight month history of episodes of swelling affecting her hands, which occurred particularly after she had been carrying heavy shopping. She had also suffered recurrent episodes of abdominal pain over the previous few months.

Her mother had a 25 year history of episodes of tongue and limb swelling, and of acute attacks of severe abdominal pain and diarrhoea, but had only been diagnosed with HAE five years previously, at another hospital, when blood tests showed a C4 concentration of 0.11 g/litre (normal range for this laboratory, 0.25–0.65 g/litre) and a C1inh concentration of 0.09 g/litre (normal range for this laboratory, 0.15–0.35 g/litre). Her mother's symptoms had improved dramatically on tranexamic acid treatment. After her mother was diagnosed with HAE, our patient's maternal aunt (who had no history of angioedema) and her maternal uncle (who had a history of hand swelling) were tested at other hospitals and were both found to have inherited the condition. Our patient's maternal grandmother (who had a history of limb swellings) declined testing. Subsequently, our patient, who at the time had no history of swellings, had been screened at another hospital for HAE. Her C4 was 0.13 g/litre (normal range for this laboratory, 0.1–0.4 g/litre) and, according to protocol for this laboratory, no further testing was performed because it was deemed that the measurement of C1inh was not indicated because the C4 value was normal.

In view of the recent clinical history of swellings and the family history of HAE, we requested that C4 and C1inh concentrations should be analysed. C4 was measured nephelometrically (reagents from Beckman Coulter using Beckman Array 360; Beckman Coulter UK Ltd, High Wycombe, UK) and C1inh by radial immunodiffusion (reagents from The Binding Site, Birmingham, UK), according to the manufacturers' instructions. The results were as follows:

- C4: 0.15 g/litre (normal range for our laboratory, 0.1–0.4 g/litre).
- C1inh: 0.07 g/litre (normal range for our laboratory, 0.18–0.37 g/litre).

To confirm the diagnosis of HAE, a repeat sample was taken six weeks later. The results were:

- C4: 0.14 g/litre (normal range for our laboratory, 0.1–0.4 g/litre).
- C1inh: 0.07 g/litre (normal range for our laboratory, 0.18–0.37 g/litre).

The patient was started on tranexamic acid and at outpatient review three months later her episodes of swelling were occurring less often and were less severe.

DISCUSSION
In HAE, reduced concentrations of C1inh protein (type I HAE) or the presence of non-functional C1inh protein (type II HAE) lead to persistently increased activation of the classical complement pathway and symptomatic swellings.

Abbreviations: C1inh, C1 inhibitor; HAE, hereditary angioedema
some patients receiving prophylactic treatment, particularly if
It is essential that screening protocols for a rare, but
result, nearly all patients with HAE have permanently low C4
concentrations. Very rarely, patients have been identified in
whom C4 values are normal, but the explanation for this is
not known. During episodes of angioedema, the sudden
increase in complement consumption means that C4 concen-
trations fall below the lower limit of detection of standard
laboratory assays. C4 concentrations may return to normal in
some patients receiving prophylactic treatment, particularly if
androgenic steroids or androgenic steroids and tranexamic
acid are used. C4 concentrations will also temporarily
normalise after infusions of C1inh.

“Patients may not always have a positive family history to
guide the clinician towards the diagnosis”

Our case illustrates that strict adherence to laboratory
protocols for the investigation of HAE is not always
appropriate. Indeed, our patient had three separate estima-
tions of C4, all of which were normal. On the first occasion,
the laboratory performing the assay issued a report stating
that C1inh testing “was not indicated” because the C4
concentration was normal. It should be noted, however, that
at this time the patient had suffered no episodes of
angioedema. Subsequently, she did begin to have swelling
attacks and episodes of abdominal pain—and this clinical
history, along with the family history of HAE, led us to
measure her C1inh concentrations, despite the fact that she
had normal C4 values.

It has been proposed that the measurement of C4 alone
could be used to screen for HAE, and that the finding of a
normal serum C4 is sufficient to exclude the diagnosis of
HAE. Our patient illustrates that this is not always the case.
Indeed, in one of these studies, several patients who were
subsequently found to have HAE on the basis of C1inh
concentrations also had normal C4 values. In addition,
patients may not always have a positive family history to
guide the clinician towards the diagnosis because, although
HAE is dominantly inherited, there is a high new sponta-
neous mutation rate leading to the reduced production of
C1inh or the production of a non-functional C1inh protein.

It is essential that screening protocols for a rare, but
potentially fatal, condition do not miss individuals with the
disease and, therefore, we suggest that both C4 and C1inh
should be measured to exclude HAE.

Authors’ affiliations
Y Karim, Si Thomas’s Hospital, Lamberth Palace Road, London SE1 7EH, UK
H Griffiths, S Deacock, Royal Surrey County NHS Trust, Guildford, Surrey GU7XX, UK

Correspondence to: Dr S Deacock, Department of Immunology, Royal
Surrey County Hospital, Guildford, Surrey GU7XX, UK; swdeacock@alroyal.surrey.nhs.uk

Accepted for publication 18 September 2003

REFERENCES
1 Sim TC, Grant JA. Hereditary angioedema: its diagnostic and management
2 Gompels MM, Lock RJ, Morgan JE, et al. A multicentre evaluation of the
diagnostic efficiency of serological investigations for C1 inhibitor deficiency.
3 Circolo A, Strunk RC. Hereditary angioedema—understanding the basis of C1
inhibitor deficiency. The Immunologist 1997;5:166–70.
Experience of the Argentine Allergy and Immunology Institute. Allergol
5 Atkinson JP. Diagnosis and management of hereditary angioedema (HAE).
7 Pitts JS, Donaldson VH, Forristal J, et al. Remissions induced in hereditary
angioneurotic edema with an attenuated androgen (danazol): correlation
between concentrations of C1–inhibitor and the fourth and second components
8 Waytes AT, Rosen FS, Frank MM. Treatment of hereditary angioedema with
9 Blanch A, Roche O, Lopez-Granados E, et al. Detection of C1 inhibitor
(SERPING1/C1NH) mutations in exon 8 in patients with hereditary
10 Pappalardo E, Cicardi M, Duponchel C, et al. Frequent de novo mutations
and exon deletions in the C1 inhibitor gene of patients with angiokeratoma.