Topographical localisation of cagA positive and cagA negative *Helicobacter pylori* strains in the gastric mucosa; an in situ hybridisation study

M Camorlinga-Ponce, C Romo, G González-Valencia, O Muñoz, J Torres

Background: The cagA gene is a marker for the presence of the cag pathogenicity island, and the presence of cagA positive strains of *Helicobacter pylori* can identify individuals with a higher risk of developing gastrointestinal diseases.

Aims: To study the interaction between *H pylori* cagA(+) and cagA(−) strains and the gastric mucosa.

Methods: Patients with *H pylori* associated gastritis and peptic ulcers were studied. Biopsies were obtained from the antrum, corpus, fundus, and incisura for *H pylori* culture, and for in situ hybridisation studies. From each biopsy, multiple single *H pylori* colonies were isolated and propagated for DNA isolation, and cagA was detected by the polymerase chain reaction (PCR). For in situ detection of *H pylori* an oligonucleotide specific for an *H pylori* common antigen and an oligonucleotide specific for cagA were used as probes. Biotinylated probes were incubated with biopsy sections, developed with streptavidin–horseradish peroxidase, and amplified with the tyramide system.

Results: PCR results for cagA in isolated colonies confirmed the in situ hybridisation studies. In situ hybridisation identified cagA(+) bacteria in patients with cagA(+) isolates; cagA(−) bacteria in patients with cagA(−) isolates, and cagA(+) and cagA(−) bacteria in patients with both cagA(+) and cagA(−) isolates. CagA(−) bacteria usually colonised the mucous gel or the apical epithelial surface, whereas cagA(+) bacteria colonised the immediate vicinity of epithelial cells or the intercellular spaces.

Conclusions: These results document a different in vivo interaction between *H pylori* cagA(+) or cagA(−) strains and the gastric mucosa.

MATERIALS AND METHODS

Gastric biopsy specimens

Gastric biopsies were obtained from patients attending the Hospital de Especialidades, IMSS in Mexico City. Patients infected with *H pylori*, with non-ulcer dyspepsia, duodenal ulcer, or gastric ulcer were studied. From each patient, two biopsy specimens were obtained from the antrum, corpus, fundus, and incisura. From each region, one biopsy specimen was used for bacterial culture of *H pylori*, whereas the second was fixed and embedded in paraffin wax and used for in situ hybridisation studies. As negative controls, biopsies from two patients with *H pylori* negative gastritis were studied.

Isolation of multiple single colonies of *H pylori* from biopsies

Biopsies were inoculated on to blood agar plates with antibiotics. From the primary growth, seven to 10 single colonies were propagated on blood agar medium. The identity of the strains was confirmed by Gram stain, urease, oxidase, and catalase tests. Colonies were swept and suspended in saline solution for DNA isolation.

PCR for cagA

Primers used for PCR typing of cagA and for the empty site to document the absence of cag PAI were described previously.**∗** PCR conditions for the cagA primers were 35 cycles of 94°C for 30 seconds, 55°C for one minute, and 72°C for 1.5 minutes, followed by a final extension at 72°C for six minutes. For the cag PAI empty site, the PCR conditions were 35 cycles of 94°C for one minute, 57°C for one minute, and 72°C for six minutes.

Abbreviations: FITC, fluorescein isothiocyanate; HRP, horseradish peroxidase; PAI, pathogenicity island; PCR, polymerase chain reaction
72°C for one minute, followed by a final extension at 72°C for six minutes. Amplified products were analysed in 2% agarose gels.

DNA probes for in situ hybridisation
For the detection of all *H pylori* strains a 303 bp oligonucleotide specific for an antigen common to all *H pylori* strains was used as a probe (Ag-C probe). For the detection of *cagA*(+) strains a 349 bp oligonucleotide specific for *cagA* was used as a probe. The probes were labelled with biotin and were synthesised by Maxim Biotec Inc (San Francisco, California, USA).

Bacteria
Helicobacter pylori 60190 (ATCC 49503) genotype *cagA*(+) and *H pylori* Tx30a (ATCC 51932) genotype *cagA*(-) were used for evaluation of the probe specificity. Strains were cultured and suspended in saline solution; mixtures of different proportions of each strain were prepared and spotted on to glass slides and immediately fixed in acetone.

In situ hybridisation using bacteria fixed on glass slides
Slides were incubated with proteinase K (20 μg/ml) for one minute, washed, and the *cagA* probe (4 μg/μl) was added; for DNA denaturation, slides were incubated for five minutes at 95°C, and at 4°C for 10 minutes. Hybridisation was carried out at 37°C for two hours in a humid chamber. Stringent washing was carried out and the biotinylated probes were detected with streptavidin–horseradish peroxidase (HRP) (NEN Inc, Boston, Massachusetts, USA), followed by Cy3–tyramide amplification reagent (NEN Inc) for 15 minutes at 37°C. Slides were washed and the Ag-C probe (4 μg/μl) was added. Denaturation, hybridisation, and stringent washing were done as described for the *cagA* probe. The second probe was detected with streptavidin–HRP, followed by the fluorescein isothiocyanate (FITC)–tyramide amplification reagent for 15 minutes at 37°C. Slides were analysed with an epifluorescence or confocal microscope (Carl Zeiss, Jena, Germany).

In situ hybridisation in gastric biopsies
Sections (4 μm thick) of each biopsy were mounted on charged slides. Sections were dewaxed, dehydrated, and washed. Slides were placed in Declere (Cell Marque Corp, Austin, Texas, USA) for 15 minutes, washed, and treated with proteinase K (25 μg/ml) for one minute. Endogenous peroxidase was blocked using 3% H₂O₂. To block biotin, sections were incubated with avidin for 15 minutes, whereas to block avidin they were incubated with biotin for 15 minutes. Sections were covered with 10 μl of the *cagA* probe (4 μg/μl). For DNA denaturation, sections were incubated at 95°C for five minutes, and at 4°C for 10 minutes. Slides were then hybridised overnight at 37°C in a humid chamber and washed with HWb (Research Genetics Inc, Huntsville, Alabama, USA) at 60°C for 10 minutes. Sections were incubated in protein blocking buffer (Bio SB Inc, Santa Barbara, California, USA) for 30 minutes, and incubated with streptavidin–HRP for 30 minutes. After washing, slides were incubated with Cy3–tyramide for 15 minutes at 37°C and

<table>
<thead>
<tr>
<th>Patient</th>
<th>Disease</th>
<th>Site</th>
<th>PCR cagA*</th>
<th>In situ hybridisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>249</td>
<td>DU</td>
<td>Antrum</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corpus</td>
<td>+</td>
<td>+/−</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundus</td>
<td>+</td>
<td>+/−</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incisura</td>
<td>+</td>
<td>+/−</td>
</tr>
<tr>
<td>251</td>
<td>DU</td>
<td>Antrum</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corpus</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundus</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incisura</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td>252</td>
<td>GU</td>
<td>Antrum</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corpus</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundus</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td>254</td>
<td>NUD</td>
<td>Antrum</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corpus</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundus</td>
<td>−/−</td>
<td>+</td>
</tr>
<tr>
<td>256</td>
<td>DU</td>
<td>Antrum</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corpus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incisura</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>259</td>
<td>DU</td>
<td>Antrum</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corpus</td>
<td>+/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundus</td>
<td>+/−</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incisura</td>
<td>+/−</td>
<td>+</td>
</tr>
<tr>
<td>261</td>
<td>GU</td>
<td>Antrum</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corpus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fundus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incisura</td>
<td>+</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Results of PCR test for *cagA* to single colonies isolates; 7 to 10 colonies were isolated from each biopsy site. DU, duodenal ulcer; GU, gastric ulcer; ND, not determined; NUD, non-ulcer dyspepsia; PCR, polymerase chain reaction.
washed. Slides were incubated with 0.1% saponin for five minutes and washed. The second biotinylated probe for \textit{H pylori} detection (Ag-C probe) was applied (4 μg/ml); hybridisation steps were the same as those for the cagA probe. For detection, FITC–tyramide was applied and developed using similar conditions as for Cy3–tyramide. After washing, slides were counterstained with DAPI and covered with vectashield. The slides were observed with an epifluorescence and a confocal microscope (Carl Zeiss).

RESULTS

PCR for cagA in single colonies

In total, 224 \textit{H pylori} strains were isolated from the four regions of the stomach of the seven patients studied (table 1). All strains tested from three patients (249, 256, and 261) were positive for cagA by PCR. All strains from three patients (251, 252, and 254) were negative for cagA. In patient 259, strains isolated from the antrum were all cagA(+) whereas strains isolated from the corpus, fundus, and incisura were a mixture of both cagA(+) and cagA(−) strains (table 1). In all cagA(−) strains the absence of the cag PAI was confirmed by amplification of the “empty site” with specific primers.

In situ hybridisation in bacteria fixed on slides

The performance of the probes specific for the common antigen and for cagA was tested with \textit{H pylori} 60190 strain (cagA(+)) and strain Tx30a (cagA(−)). Suspensions with different proportions of each strain were fixed and tested. The probes were able to differentiate between cagA(−) and cagA(+) strains (fig 1).

In situ hybridisation in gastric biopsies

No \textit{H pylori} bacteria were seen in the biopsies of the two patients without \textit{H pylori} infection. To document the specificity of the staining, bacteria in biopsies from patients colonised with either the cagA(+) or cagA(−) strains were scanned and the intensity of the FITC and Cy3 fluorescence was measured (fig 2). Patient 58 was colonised with both cagA(−) and cagA(+) strains and the scanning of a bacterium revealed green with the triple filter, confirming the exclusive presence of FITC fluorescence (fig 2A); patient 67 was colonised with cagA(+) strains and the scanning of bacteria with the triple filter demonstrated the presence of both FITC and Cy3 fluorescence (fig 2B).

Table 1 presents the correlation between the cagA PCR results in the single isolates and the in situ hybridisation tests.
for seven patients studied in four stomach regions. PCR results were confirmed by the in situ hybridisation studies with two exceptions. In patient 252, all single isolates were cagA(−) by PCR but some cagA(+) bacteria were identified in the antrum by in situ hybridisation. In patient 259, all single isolates from the antrum were cagA(+) by PCR but in situ hybridisation demonstrated the presence of some cagA(−) bacteria.

Figure 3 shows the results of biopsies from two patients observed with FITC, Cy3, and the triple filter. In patient 256, all the isolates were cagA(+) by PCR, and the bacteria were seen in situ with all three filters (fig 3A–C), as expected;
colonisation was seen in the immediate vicinity of the epithelial cells. In patient 254, where all isolates were cagA(−) by PCR, bacteria were seen in situ with FITC and the triple filter but not with the Cy3 filter (fig 3D–F), and colonisation was seen mainly in the mucus gel. In our study, initial attempts at in situ hybridisation of H pylori were made; however, this approach does not document by PCR in either isolated bacteria or DNA extracted from biopsies.6–7 However, this approach does not provide information on the in vivo localisation of either cagA(+) or cagA(−) strains. The possibility of in situ localisation of cagA(+) or (−) strains is important in the light of evidence that patients may be colonised with both cagA(+) and (−) strains.12–14 In our study, we report a technique that allows the in situ detection and differentiation of both cagA(+) and (−) strains in gastric biopsies of patients infected with H pylori. Results of in situ hybridisation were confirmed with PCR in multiple isolates from biopsies, with two exceptions, namely: (1) case 252, where PCR showed that all the isolates from the antrum were cagA(−), whereas in situ hybridisation documented colonisation with both cagA(+) and (−) strains; and (2) case 259, where all the isolates from the antrum were cagA(+) strains. These results suggest that the sensitivity of culture, even after testing multiple isolates, to identify strains with different genotypes is lower than that of in situ hybridisation.

In our study, initial attempts at in situ hybridisation of both the cagA(+) and (−) strains using probes directly

The presence of the cagA gene is a useful marker for the cag PAI, and gastric colonisation with cagA(+) strains has been documented by PCR in either isolated bacteria or DNA extracted from biopsies.2–9 However, this approach does not provide information on the in vivo localisation of either cagA(+) or cagA(−) H pylori strains. The possibility of in situ localisation of cagA(+) or (−) strains is important in the light of evidence that patients may be colonised with both cagA(+) and (−) strains.12–14 In our study, we report a technique that allows the in situ detection and differentiation of both cagA(+) and (−) strains in gastric biopsies of patients infected with H pylori. Results of in situ hybridisation were confirmed with PCR in multiple isolates from biopsies, with two exceptions, namely: (1) case 252, where PCR showed that all the isolates from the antrum were cagA(−), whereas in situ hybridisation documented colonisation with both cagA(+) and (−) strains; and (2) case 259, where all the isolates from the antrum were cagA(+) strains. These results suggest that the sensitivity of culture, even after testing multiple isolates, to identify strains with different genotypes is lower than that of in situ hybridisation.

In our study, initial attempts at in situ hybridisation of both the cagA(+) and (−) strains using probes directly

Figure 5 In situ hybridisation for the detection of Helicobacter pylori cagA(+) and cagA(−) strains in gastric biopsies of patients colonised with H pylori. The DNA probe for the common antigen was developed with fluorescein isothiocyanate (FITC; green) and the probe for cagA was developed with Cy3 (red). All preparations were observed with the triple filter. Patients 251 and 252 were colonised with cagA(+) strains, and colonisation is seen mainly in the mucous or in the proximity of the epithelial cells. Patients 256 and 261 were colonised with cagA(+) strains, and colonisation is seen in the interepithelial spaces and in intimate contact with the epithelium. Patients 285 and 247 were colonised with both, cagA(−) and cagA(+) strains. The arrowsheads point to cagA(+) and the arrows to cagA(+) bacteria; in patient 285 some cagA(+) bacteria are seen in intimate contact with the epithelial cells, whereas in patient 247 a few cagA(−) bacteria are seen in the mucus.
labelled with fluorochromes gave unsatisfactory results. The technique was greatly improved when we used the tyramide method to amplify the signal. This technique has been shown to increase the sensitivity for in situ detection of antigens and DNA markers in different systems.

"Our results suggest that the sensitivity of culture, even after testing multiple isolates, to identify strains with different genotypes is lower than that of in situ hybridisation."

A recent study reported the ability of cag PAI (+) strains to colonise the intercellular space of epithelial cells in culture and to disrupt the organisation of tight junctions. In our study, we found that in cases of colonisation with cagA (−) strains, infection is mostly seen in the mucous gel or in areas near the apical surface of epithelial cells, whereas in cases of colonisation with cagA (+) strains, the bacteria are seen in more intimate contact with the epithelium, in the immediate vicinity of the epithelial cells or in the intercellular epithelial spaces. In fact, the study of cases with infection of both cagA (+) and (−) strains allowed us to document further the areas of colonisation by these two strains. We confirm the observations made in tissue cultures with cagA (+) strains, and suggest that colonisation by cagA (−) strains is restricted to the mucous gel or the apical surface of epithelial cells. Although this pattern of colonisation by cagA (+) and (−) strains has been suggested previously, our results document for the first time that this pattern of colonisation occurs in vivo. We acknowledge the possibility that the patterns of colonisation seen here might not result exclusively from the presence of the cag PAI, and that other genes, such as babA, a gene encoding an adhesin with affinity for the Lewis b antigen, might also play a role.

The method described here could help elucidate the role of cagA in the development of gastroduodenal diseases associated with H pylori infection. Our results document a difference between the in vivo interaction of H pylori cagA (+) or cagA (−) strains and the gastric mucosa.

ACKNOWLEDGMENTS
This work was supported by CONACYT (grant 34563-M), Mexico; and by the Coordinacion de Investigacion en Salud, IMSS, Mexico. We thank A Eras (Bio SB Inc) and Dr I Santos (Cinvestav, Mexico) for technical advice.

Authors' affiliations
M Camorlinga-Ponce, C Romo, G González-Valencia, O Muñoz, J Torres, Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico.
REFERENCES