Expression of vascular endothelial growth factor D is associated with hypoxia inducible factor (HIF-1α) and the HIF-1α target gene DEC1, but not lymph node metastasis in primary human breast carcinomas

M J Currie, V Hanrahan, S P Gunningham, H R Morrin, C Frampton, C Han, B A Robinson, S B Fox

Background: Vascular endothelial growth factor D (VEGF-D) induces angiogenesis and lymphangiogenesis. Nodal metastasis is recognised as a powerful prognostic marker in breast carcinoma, but the molecular mechanisms underlying this process are unknown. Although it has been suggested that VEGF-D may regulate nodal metastasis, this is based largely on animal models, its role in human disease being unclear.

Aims: To measure the pattern and degree of VEGF-D protein expression in normal and neoplastic human breast tissues.

Methods: The pattern and degree of VEGF-D expression was measured in normal tissue and invasive carcinomas, and expression was correlated with clinicopathological parameters, hypoxia markers, and survival. Because other VEGF family members are affected by oestrogen, whether VEGF-D is regulated by oestrogen in breast cancer cell lines was also assessed.

Results: VEGF-D was significantly positively associated with hypoxia inducible factor (HIF-1α) (p = 0.03) and the HIF-1α regulated gene DEC1 (p = 0.001), but not lymph node status, the number of involved lymph nodes, patient age, tumour size, tumour grade, lymphovascular invasion, oestrogen receptor, progesterone receptor, c-erb-B2, or tumour histology (all p > 0.05). There was no significant relation between tumour VEGF-D expression and relapse free (p = 0.78) or overall (p = 0.94) survival. VEGF-D expression was enhanced by oestrogen in MCF-7 and T47D breast cancer cells, and was blocked by hydroxytamoxifen.

Conclusion: These findings support a role for hypoxia and oestrogen induced VEGF-D in human breast cancer and also suggest that tamoxifen and related oestrogen antagonists may exert some of their antitumour effects through the abrogation of VEGF-D induced function.
regarding tumour size, grade, and oestrogen receptor status of these patients. Tumours were treated by simple mastectomy (n = 38) or wide local excision (n = 169). All patients with tumours had axillary node status confirmed histologically. The grading of ductal carcinomas was performed by specialist breast pathologists trained at a single institution (John Radcliffe Hospital) according to the Bloom and Richardson method. Repeat follow up was performed every three months for the first 18 months and every 18 months thereafter; clinical parameters, relapse free survival, and overall survival were recorded from the date of surgery. In patients < 50 years old, adjuvant cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) was administered if tumours were node positive, or oestrogen receptor (ER) negative, and/or \(> 3 \) cm. Patient who were \(> 50 \) years who had ER negative, node positive tumours also received CMF. Radiotherapy was given according to accepted practice at the time. The median follow up was 7.5 years (range, 0.6–11.2), during which time there were 66 relapses (local or distant) and 44 deaths from breast cancer.

VEGF-D immunohistochemistry

The pattern of VEGF-D expression was assessed in whole tissue sections taken from 15 normal breast tissues and 15 invasive carcinomas. The degree of VEGF-D expression was measured semiquantitatively in 207 invasive breast carcinomas using tissue microarrays. The tissue microarrays were constructed by first assessing haematoxylin and eosin stained whole tissue sections of each tumour to select the representative areas of the tumour from which the core biopsies were taken. Cores (1 mm) were then removed from the designated donor block using a precision instrument (Beecher Instruments, Silver Spring, Maryland, USA) and were placed into the recipient paraffin wax block. Sections (5 \(\mu \)m thick) were then cut, placed on polylysine coated slides, and stained with a goat polyclonal antibody (SC-7602; Santa Cruz Biotechnology, Santa Cruz, California, USA), a rabbit antibody was used as a negative control. Scoring of invasive carcinomas was performed blinded and was graded according to the intensity and extent of epithelial staining, as reported previously, namely:® negative, 0; weak focal staining, 1; strong focal/widespread moderate staining, 2; or strong widespread staining, 3.

Table 1: Comparison of the expression of angiogenic ligand VEGF-D protein and the clinicopathological variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>VEGF-D negative</th>
<th>VEGF-D positive</th>
<th>(p) Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no of patients</td>
<td>75</td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(< 50)</td>
<td>19</td>
<td>41</td>
<td>0.38</td>
</tr>
<tr>
<td>(\geq 50)</td>
<td>56</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Nodal status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>44</td>
<td>84</td>
<td>0.48</td>
</tr>
<tr>
<td>Positive</td>
<td>31</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Tumour size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(< 2 \text{ cm})</td>
<td>47</td>
<td>87</td>
<td>0.64</td>
</tr>
<tr>
<td>(\geq 2 \text{ cm})</td>
<td>28</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15</td>
<td>32</td>
<td>0.12</td>
</tr>
<tr>
<td>II</td>
<td>22</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>ER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>19</td>
<td>46</td>
<td>0.16</td>
</tr>
<tr>
<td>Positive</td>
<td>56</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>31</td>
<td>50</td>
<td>0.64</td>
</tr>
<tr>
<td>Positive</td>
<td>42</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>HIF-1(\alpha)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>61</td>
<td>93</td>
<td>0.03*</td>
</tr>
<tr>
<td>Positive</td>
<td>6</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>DEC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>33</td>
<td>26</td>
<td>0.0001*</td>
</tr>
<tr>
<td>Positive</td>
<td>26</td>
<td>93</td>
<td></td>
</tr>
</tbody>
</table>

*Significant.

EGFR, epithelial growth factor receptor; ER, oestrogen receptor; HIF, hypoxia inducible factor; VEGF, vascular endothelial growth factor.
instructions. Cell culture experiments were repeated in triplicate.

Relative RT-PCR was used to measure the changes in VEGF-D gene expression in MCF-7 and T47D cells. VEGF-D primers used in cell culture experiments were as follows: forward, GTATGGACTCTCGCTCAGCAT; reverse, AGGCTCTCTTCATTGCAACAG.22 Pilot experiments determined that an 18S primer to 18S Competimer™ (Ambion, Austin, Texas, USA) primer ratio of 1 : 9 was required to coamplify VEGF-D and 18S. Thirty PCR cycles were required to maintain the PCR reactions in the midlinear range (data not shown).

As a positive control, expression of the oestrogen regulated gene p52 was determined.23-26 Pilot experiments determined that an 18S primer to 18S Competimer™ primer ratio of 3 : 7 was required to coamplify p52 and 18S. PCR conditions were as described above, with an annealing temperature of 55°C and 30 PCR cycles.

Statistical analysis

Tests of hypotheses on the location parameter (median) were performed using rank statistics (Mann-Whitney, Kruskal-Wallis, and adjusted Kruskal-Wallis for ordered groups). The χ^2 test was used to test for the independence of categorical variables, including categorised continuous variables. The log rank test was used to test for differences in survival. All statistics were performed using the Stata package release 7.0 (Stata Corporation, College Station, Texas, USA).

RESULTS

VEGF-D protein localisation and relations between VEGF-D protein expression, clinicopathological variables, and survival

Weak VEGF-D expression was seen in myoepithelial cells and in luminal ductal cells of glands and ducts in normal breast tissue derived from surgical reductions (fig 1). Most immunoreactivity was present in the luminal ductal cell layer, with more occasional staining in myoepithelial cells; interlobular and intralobular stromal and inflammatory cells also expressed VEGF-D (fig 1). Expression was enhanced in areas of cystic disease. Stronger expression of VEGF-D, which was predominantly in the malignant epithelium of breast cancers, was seen in both in situ and invasive cancers. In situ cancers, there was variation in expression both within and between affected ducts, whereas in invasive disease, expression was generally homogeneous. Nevertheless, heterogeneity of expression was seen in different parts of some tumours, with peripheral accentuation. No enhancement of VEGF-D expression was seen in necrotic areas (fig 1), but consistent with recent findings, a strong granular pattern of VEGF-D staining was seen within the cytoplasm of malignant epithelium at the secretory pole of glands in well differentiated tumours24 (fig 1). VEGF-D staining was also seen in non-neoplastic elements, including smooth muscle of arterial walls and endothelium, together with stromal cells and macrophages (fig 1). Expression of HIF-1α and DEC1 was both nuclear and cytoplasmic. In general, this was of equal intensity, although some cases demonstrated nuclear positivity alone.

A significant association was seen between VEGF-D and HIF-1α (p = 0.03) and the HIF regulated gene DEC1 (p = 0.001), but no significant associations were seen with lymph node status (p = 0.48), number of lymph nodes involved (categories: 0, 1–4, ≥ 5 nodes; p = 0.94), patient age (p = 0.38), tumour size (p = 0.64), ER (p = 0.16), or epidermal growth factor receptor (p = 0.64) (table 1). There was no significant difference in relapse free (p = 0.78) or overall survival (p = 0.94) when stratifying by VEGF-D expression.

The effect of 17β estradiol on VEGF-D gene expression in oestrogen responsive breast cancer cell lines

VEGF-D was strongly expressed in both ER positive breast carcinoma cell lines (MCF-7 and T47D; fig 2), and was also expressed in five of the six ER negative breast carcinoma cell lines tested. VEGF-D gene expression was strong in MDA-MB-435, MDA-MB-468, and SKBR3, weak in MDA-MB-453, very weak in BT20, and undetectable by RT-PCR in MDA-MB-231 cells (fig 2).

The effect of 17β estradiol on VEGF-D expression was investigated in MCF-7 and T47D breast cancer cell lines. VEGF-D mRNA was upregulated in MCF-7 and T47D cells (fig 3) incubated for two and 18 hours in medium containing...
10^{-9}M 17β estradiol. To assess whether this effect was ER regulated, the experiment was repeated using T47D cells and the partial ER agonist 4-hydroxytamoxifen. At 18 hours, VEGF-D mRNA gene expression and the oestrogen responsive positive control gene pS2 were suppressed in response to 4-hydroxytamoxifen treatment (fig 4).

DISCUSSION

We have investigated the pattern and degree of VEGF-D protein expression in a series of normal and malignant breast tissues. We found that VEGF-D is present in normal and neoplastic breast tissue, suggesting a role for VEGF-D in both physiological and pathological situations. In physiological situations, this cytokine may have a role in the vascular and lymphatic remodelling associated with changes that occur during the menstrual cycle, and in pathological situations it may be involved in changes that occur during tumour progression.

Although enhanced vascular endothelial growth factor D expression was not seen adjacent to areas of necrosis, we did find a significant association with HIF-1α and the HIF target gene DEC1, consistent with non-necrotic viable areas of tumour also being hypoxic.

Previous studies using animal tumour models have shown that VEGF-D induces lymphangiogenesis and promotes tumour cell metastasis via the lymphatic system. We detected VEGF-D protein expression in all histological types of breast cancer and not solely inflammatory breast tissue, suggesting a role for VEGF-D in both physiological and pathological situations. In physiological situations, this cytokine may have a role in the vascular and lymphatic remodelling associated with changes that occur during the menstrual cycle, and in pathological situations it may be involved in changes that occur during tumour progression.

Although enhanced vascular endothelial growth factor D expression was not seen adjacent to areas of necrosis, we did find a significant association with HIF-1α and the HIF target gene DEC1, consistent with non-necrotic viable areas of tumour also being hypoxic.

Although enhanced VEGF-D expression was not seen adjacent to areas of necrosis, we did find a significant association with HIF-1α and the HIF target gene DEC1, consistent with non-necrotic viable areas of tumour also being hypoxic.

Although enhanced VEGF-D expression was not seen adjacent to areas of necrosis, we did find a significant association with HIF-1α and the HIF target gene DEC1, consistent with non-necrotic viable areas of tumour also being hypoxic.

Although enhanced VEGF-D expression was not seen adjacent to areas of necrosis, we did find a significant association with HIF-1α and the HIF target gene DEC1, consistent with non-necrotic viable areas of tumour also being hypoxic.
Take home messages

- Vascular endothelial growth factor D (VEGF-D) was significantly positively associated with hypoxia inducible factor (HIF-1α) and the HIF-1α regulated gene DEC1 but there was no significant relation between tumour VEGF-D expression and relapse free or overall survival.
- VEGF-D expression was enhanced by oestrogen in oestrogen receptor positive breast cancer cells and was blocked by hydroxytamoxifen.
- These findings support a role for hypoxia and oestrogen induced VEGF-D in human breast cancer and also suggest that tamoxifen and related oestrogen antagonists may exert some of their antitumour effects through the abrogation of VEGF-D induced function.

induction is yet to be defined, our findings suggest that it might partly be mediated through HIF-1α, and that hypoxia targeted treatments, such as blocking of HIF-1α, may be a mechanism to reduce VEGF-D. 10

Nakamura et al. reported the absence of an association between VEGF-D and ER and suggested that VEGF-D is unlikely to be regulated by oestrogen. 11 We also found no association between VEGF-D and ER, and suggested that VEGF-D may be a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flk3). Proc Natl Acad Sci U S A 1996;93:548–53.

- Nakamura et al. reported the absence of an association between VEGF-D and ER and suggested that VEGF-D is unlikely to be regulated by oestrogen. 11 We also found no association between VEGF-D and ER, and suggested that VEGF-D may be a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flk3). Proc Natl Acad Sci U S A 1996;93:548–53.

REFERENCES

www.jclinpath.com

J Clin Pathol: first published as 10.1136/jcp.2003.015644 on 27 July 2004. Downloaded from

on May 11, 2022 by guest. Protected by copyright.

Call for papers

10th European Forum on Quality Improvement in Health Care
13–15 April 2005, ExCel, Docklands, London
For further information on how to submit your paper please go to:
http://www.quality.bmjpg.com