Supernumerary kidney is one of the least common forms of congenital renal abnormality and is usually discovered when it presents complications. The diagnosis of supernumerary kidney is confined to a mass of renal tissue that has no parenchymatous connection with the definitive kidney. The published literature on supernumerary kidney is scarce. Here, we report a case that presented as indirect inguinal hernia.

A 36 year old man suffering from chronic asthma presented with a painful swelling in the left inguinal region, which he first noticed one month previously. The swelling measured 3.0 x 4.0 cm, was situated on the medial aspect of the inguinal ligament, and was reducible with positive cough impulse. The scrotum on the left side was empty. An abdominal scan showed normal organs, including two normal kidneys. A diagnosis of indirect inguinal hernia with undescended testis was made and the patient underwent surgery. The hernial sac included an ectopic supernumerary kidney.

The testis showed a positive string sign on the cut surface. The other mass had a grey white cut surface, with an intact capsule. Sections of the testis showed seminiferous tubules with thickened basement membranes containing inactive germ cells and some having only Sertoli cells. These features were consistent with cryptorchid testis. Sections from the bean shaped mass showed a kidney-type structure, with cortex and medulla. The glomeruli and tubules were seen in their developmental stages, with immature mesenchymal tissue interspersed in between (fig 1). These features were consistent with a diagnosis of supernumerary kidney because the patient had two normal kidneys in the abdomen.

A supernumerary kidney is a rare congenital anomaly. About 70 such cases have been reported in the international literature. However, to the best of our knowledge, this is the first reported case of a supernumerary kidney in an ectopic position. The kidney usually lies within the renal fascia, caudal to the normal organ. Because the kidney was located below the second lumbar vertebra in this case, we prefer to classify it as an ectopic supernumerary kidney.


The supernumerary kidney is smaller, can be hypoplastic, and is usually not well organised histologically. This case has been reported for its rarity and also because of its unusual presentation with cryptorchid testis as inguinal hernia.

V Kosuma, M Hemalata, B V Suguna
Department of Pathology, Kempegowda Institute of Medical Sciences (KIMS), VV Puram, Bangalore 560004, India; vikosuma1961@rediffmail.com

References

Figure 1. Haematoxylin and eosin stain of the neoplastic tissue (original magnification, ×50).

Figure 2. Tissue stained positive for synaptophysin (original magnification, ×50).
Previous reports of these tumours have been in the lung,5 nasopharynx, thymus, and in one report, the kidney.7 The tumours are malignant and capable of metastatic spread. They can also result in a carcinoid syndrome, so that full resection is recommended.

This case is worthy of note in view of its rarity. Carcinoid tumours of the bladder have been reported sporadically, but this is the first report of an oncotypic type. The appearance of the tumour was somewhat innocuous, but early excision biopsy averted potentially more serious consequences later on.

Acknowledgement

Dr P Harnden (St James University Hospital, Leeds, UK) reviewed the pathological findings.

J E McCabe, S Das
Department of Urology, Countess of Chester Hospital, Liverpool Road, Chester, CH2 1UL UK; johnemccabe@lineone.net

P Dowling, B N Hamid
Department of Pathology, Countess of Chester Hospital

B A Pettersson
Department of Urology, Countess of Chester Hospital

References


Endothelial progenitor cells in non-small cell lung cancer

We read with interest the article by Hilbe et al concerning the contribution of endothelial progenitor cells (EPCs) to the vasculature in non-small cell lung cancer (NSCLC).1 In their study, the authors conclude that “increased evidence that putative angioblasts, also known as EPCs, can be found in NSCLC tissue and these cells seem to contribute to the formation of capillaries”. Although it is interesting and worthy of further study, in our view, the evidence presented in their paper is unconvincing. However, the problems are not apparent to readers unfamiliar with the background or pitfalls of this specialised topic.

The development of a vascular network plays a crucial role in the development and function of normal tissues and organs, in addition to tumour growth and metastasis. Understanding how tumours acquire their vasculature is indispensable for developing novel therapeutic strategies. However, the vascularisation of tumours is very complex, consisting of sprouting, vessel cooption, glomeruloid angio genesis, mosaic vessel formation, vascular mimicry, and intussusceptive angiogenesis.45 Furthermore, there is emerging evidence that putative angioblasts, also known as EPCs, might persist in adult life and contribute to the vascularisation of tumours.6 EPCs have been isolated from peripheral blood and bone marrow. Similar to embryonic angioblasts, EPCs have the capacity to proliferate and differentiate into mature endothelial cells (ECs). To date, no clear definition exists as to when an EPC turns into a mature, fully differentiated endothelial cell in vivo. Early EPCs (localised in the bone marrow or immediately after migration into the circulation) are CD133+/CD34+/VEGFR-2+ (vascular endothelial growth factor receptor 2 positive) cells, whereas circulating EPCs are positive for CD34/VEGFR-2/CD331/Ve-cadherin, lose CD133, and begin to express von Willebrand factor. In general, it is widely accepted that the loss of CD133 reflects the transformation of early circulating EPCs into more mature endothelial-like cells.7

Hilbe et al identified early EPCs by CD133 labelling not in peripheral blood or bone marrow, but in the endothelial tubes of NSCLC tissue. The key evidence for their identity came from immunohistochemical studies.8

In our view, there are three problems with the arguments put forward by Hilbe et al. First, the presumed localisation of EPCs on serial frozen sections is not convincing because neither multiple microvessel labelling for CD133 and EC markers nor immunoelectron microscopic examination was performed. Because the cellular boundaries cannot be seen in the figures provided, it is unclear what types of cells are CD133+. Second, CD133 is not exclusively expressed on early—but not circulating or committed—EPCs. In addition to being expressed on haemopoietic stem cells, CD133 also serves as a marker for non-haemopoietic progenitor cells, such as neural crest cells, embryonic stem cell lines, and adult stem cells with a pluripotent differentiation capacity.9 Furthermore, CD133 was found to be expressed on tumour cells of epithelial origin.10 The possibility that the CD133+ cells in the NSCLC tissue are not ECs was not explored.

Third, a convincing argument for the presence of EPCs in the NSCLC tissue depends on the unequivocal identification of this cell type. Hilbe et al did not use more than one early stem cell marker to detect EPCs.1 F their method differs from several earlier studies that used different antibody combinations.

The involvement of alternative vascularisation mechanisms—including vasculogenesis—in the tumour blood supply has broad biological and medical importance. We found the mass emerging from the Hilbe study a valuable contribution to our knowledge of the vasculogenesis in tumour tissue. Our critical comments are intended simply as a reminder that the extent of these phenomena is still unclear, and can only be determined by rigorous examination.

B Dome
Department of Pulmonary Oncology, National Institute of Pulmonology, Pécs, u. 1–3, Budapest, H-1529, Hungary, domeb@yahoo.com

J Timár
National Institute of Oncology, H-1122, Ráth Gy. u. 7–9, Budapest, Hungary

G Ostoros
Department of Pulmonary Oncology, National Institute of Pulmonology

S Paku
First Institute of Pathology and Experimental Cancer Research, Semmelweis University, M-1085, Ulló ut 26, Budapest, Hungary

Monckeberg medial calcific sclerosis mimicking malignant calcification pattern at mammography

Monckeberg medial calcific sclerosis (MCS) is a ring-like calcification of the vascular media of small to medium sized vessels without associated intimal thickening. Almost exclusively, MCS is the underlying condition in what is referred to as breast arterial calcification (BAC) detected at mammography. BAC is a relatively common finding. The classic radiographic pattern of BAC is the “railroad track” pattern, which appears as linear parallel calcifications, and is a reflection of the circumferential pattern of calcification in MCS.1 It is easily interpreted as benign.

We recently encountered an atypical microcalcification pattern of MCS mimicking malignant calcification in a 64 year old woman discovered at routine mammography. She had no risk factors for breast cancer. There was no history of breast trauma or surgery, renal disease, or parathyroid problems. The patient had non-insulin dependent diabetes mellitus. Coronary artery disease was present as identified by an episode of retrosternal chest pain and a stress test showed ST segment elevation in the electrocardiogram. No palpable abnormalities were present in the breast or axilla.

This atypical pattern was present together with popcorn-like calcification of a hyalinised fibroadenoma and typical benign microcalcifications. The atypical calcification was present as medium to high density clustered microcalcifications in a curved and branching pattern. This pattern is usually caused by calcium phosphate and is typically associated with malignancy, compared with low density amorphous calcification, which is caused by calcium oxalate, and are associated with benign conditions.2

Wired localisation of the clustered calcifications was performed and subsequent mammograms showed that suspicious microcalcification clusters were included in a block. Sections concerning to suspicious microcalcifications had Monckeberg medial calcific sclerosis in small to medium sized vessels. These were both ring-like classic circumferential areas of calcification and discontinuous calcification foci in arterial media.

References


This atypical pattern posing a diagnostic dilemma requires excision for histopathological assessment. It has been reported earlier, and is probably caused by non-circumferential and discontinuous foci of calcification in the vascular media; these calcific microliths are probably seen in the early stages of development of MCS, and may mimic linear, curved, or branching patterns of microcalcification clusters indicating malignancy.

The pathogenesis of MCS/BAC is thought to be related to several factors, including age related change, diabetes mellitus, chronic renal failure, and coronary artery disease. Pecchi et al showed that the presence and severity of BAC strongly correlated with the extent of coronary atherosclerosis, as determined by the amount of coronary calcium detected by multislice computed tomography, and BAC may indeed be a surrogate marker of coronary artery disease. Although coronary artery disease is almost always the result of intimal atherosclerosis, a disease different from MCS, the association may be reflective of shared pathways of calcium deposition.

In summary, this report highlights the atypical calcification pattern of Monckeberg medial calcific sclerosis mimicking malignant calcifications in breast requiring excision for this benign vascular calcification may also be a marker of coronary artery disease.

A Saxena
Department of Pathology, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, S7N 0W8 Canada; saxena@sask.usask.ca

I C Waddell
Department of Radiology, Victoria Hospital, Prince Albert, Saskatchewan, S0V 2T4 Canada

R W Friesen
Department of Surgery, Victoria Hospital

R T Michalski
Department of Pathology, Victoria Hospital

References

Extradural haemopoiesis
Extradural haemopoiesis usually occurs in association with haematological disorders—in particular, myeloliposis—and normally occurs in the reticulo-endothelial system, involving the liver, spleen, and lymph nodes. The heart and other organs are less often affected. In addition, single lineage haemopoiesis may occur, although it does not usually form mass-like lesions. This report describes a focus of erythropoiesis occurring in a renal cell carcinoma.

A 55 year old woman underwent a right radical nephrectomy and the specimen measured 30 × 6 × 6 cm. A 2.5 × 2.0 × 2.0 cm circumscribed nodule was present. Microscopic examination showed a clear cell renal carcinoma, nuclear grade 2, with central cystic degeneration. A single, extremely small focus of erythropoiesis was present within a central small capillary, consisting of approximately 20 nucleated red blood cells (fig 1). A preoperative haemoglobin concentration was normal, at 132 g/litre (normal range, 115–185).

Extradural haemopoiesis has been reported in the kidneys, usually associated with idiopathic myeloliposis.4 A renal cell carcinoma associated with a periportal liposarcoma and extradural haemopoiesis has been documented.1 A superficial, spindle cell lipoma from the neck with extradural erythropoiesis has also been reported.7 Extradural haemopoiesis also occurs in hepatic angiomylipoma (but not in renal angiomylipoma) and in other hepatic tumours, an occurrence thought to be related to the hepatic sinusoidal endothelium. Foci of haemopoiesis or erythropoiesis have been described adjacent to recent, acute myocardial infarcts, thought to be a manifestation of altered cytokine production.8 Isolated megakaryocytes are a normal occurrence in the capillaries of the lung.9 They have been cited to occur in sentinel lymph nodes,10 although in lymph nodes they are usually present as part of microscopic foci of erythropoiesis and granulopoiesis. Extradural haemopoiesis usually occurs in tissues with a milieu that supports the proliferation of primitive haemopoietic bone marrow elements. Filtration of clonogenic bone marrow cells within supportive tissues is one pathogenetic mechanism considered in the pathogenesis of extradural haemopoiesis, whereas the migratory nature of megakaryocytes may explain their presence in aberrant sites in the absence of extradural haemopoiesis. Although this case may represent a transitory haemopoietic focus, a rare erythropoietin induced occurrence of erythropoiesis within a renal cell carcinoma is perhaps a more plausible explanation. Although it has been reported that 74% of renal cell carcinomas show strong erythropoietin immunolocalisation,9 foci of associated erythropoiesis appear to be unusual.

J D Coyne
Wythenshawe Hospital, Wythenshawe, Manchester M20 8UR, UK; johnnycoyne@doctors.org.uk

References

Figure 1 (A) Low power appearance of renal cell carcinoma with focus of erythropoiesis. (B) Intracapillary erythropoiesis.