HEPARIN AND THE ADRENAL CORTEX*

BY

J. V. GARRETT

From the Pathology Departments, Royal Hospital and Royal Infirmary, Sheffield

(RECEIVED FOR PUBLICATION JUNE 11, 1953)

The occasional occurrence of thrombosis after operation has stimulated many attempts to demonstrate an increased coagulability of the blood in the post-operative period. Most of these attempts gave negative or equivocal results, probably because the methods employed were not sensitive enough to record the changes occurring in the complex process of blood coagulation. Nevertheless several investigators (Bergquist, 1945; Greig, 1949) reported a shortening of the whole blood clotting time soon after operation. Crafoord (1937), in the course of an investigation into the prevention of post-operative thrombosis by heparin, noted that a given dose of heparin had less effect in prolonging the clotting time in the first 48 hours after operation than in normal people, or in the later post-operative period. It was therefore considered that a new investigation of the coagulability of the blood after operation, as measured by a heparin clotting test, and an attempt to relate the changes observed to the increased activity of the adrenal cortex occurring as a result of the "stress" of operation (Selye, 1950), might be of interest.

Material and Methods

Twenty-nine surgical cases were investigated the day before operation and whenever possible immediately after operation, and on successive days thereafter into the second post-operative week. The test used was a slight modification of Soulier's in vitro heparin-resistance test (Soulier, 1951; Soulier and Le Bolloch, 1951). Five millilitres of venous blood, obtained by clean venepuncture with an oiled syringe, was added to a dry mixture of 4 mg. potassium and 6 mg. ammonium oxalate (Heller and Paul, 1934). The plasma was separated by centrifuging at 2,000 r.p.m. for five minutes. Three heparin and calcium-chloride solutions were prepared containing approximately 1.0, 0.7, and 0.3 units of heparin respectively in 0.5 ml. of M-40 CaCl₂. The optimum amount of heparin in the first tube was determined by noting the clotting time at 37°C with 0.25 ml. of normal plasma obtained and treated in the same way as the patient's plasma. If this was over 20 minutes or under nine minutes the concentration was adjusted to bring it within this range. The other two heparin solutions were made by diluting this solution. In performing the test 0.25 ml. of M-40 CaCl₂ was placed in a small test-tube and 0.25 ml. of each of the dilutions of heparin and M-40 CaCl₂ in three other tubes all in a water-bath at 37°C; 0.25 ml. of plasma was added to each tube, mixed, and a stopwatch started as soon as the plasma had been added to the fourth tube. A control test, using normal plasma obtained and treated in the same way as the test and centrifuged at the same time, was performed simultaneously, using the same heparin and CaCl₂ solutions as used in the test. The results were expressed as "clotting delay," that is, the difference in clotting time between the tube containing no heparin and that containing most. The intermediate tubes serve as checks only. This clotting delay is related to the normal by expressing it as a percentage of the normal control clotting delay obtained simultaneously. In a series of 12 normals the range was found to be ±20%.

Eosinophil counts were carried out by the chamber technique of Randolph (1949).

Results

Only a summary of the results and graphs illustrating a few individual cases will be given here, details having been presented elsewhere (Garrett, 1953). Owing to difficulties in the collection of blood samples, in some of the 29 cases there are insufficient data for statistical analysis. Table I shows the figures for the clotting delay, expressed as a percentage of the control clotting delay, in the 20 cases with a pre-operative value and at least two values in the first three days after operation, including the day of operation itself. It will be seen that in 16 of the 20 cases the post-operative mean clotting delay value is lower than the pre-operative value. This pre-operative value shows considerable variation between cases. The variation in heparin resistance has been noted by others (Warren, Amdur, Belko, and Baker, 1950) and in this series may be due to the effects of the patient's illness itself. To overcome the error introduced by this variability an analysis of variance was performed on the results. This showed that when the variance between the
pre- and post-operative groups within cases was tested against the variance within the groups the post-operative values were significantly lower than the pre-operative (p<0.01). In other words, heparin had less effect in delaying the clotting time of plasma in the first two days after operation than it had before operation. In the later post-operative period the values for clotting delay returned to normal. The resistance to heparin after operation did not appear to be related to the occurrence of thrombosis or to the nature of the operation or anaesthetic, although in general those undergoing comparatively minor procedures, such as radical removal of hydrocele, showed less marked changes than those submitted to more severe operations, such as partial gastrectomy.

In every case the eosinophil count showed the post-operative fall described by others (Roche, Thorn, and Hills, 1950). The lowest levels were usually reached 24 to 48 hours after operation, whereas the shortest clotting delay values were often observed immediately after the operation. Otherwise the two observations correlated well, both returning to normal at about the same rate. Fig. 1 shows a typical response.

It has been noted that the heparin resistance test shows a shortened clotting time when the platelet count is high (Waugh and Ruddick, 1944; Soulier and Le Bolloch, 1950; Carr and Fowler, 1949) and it might be argued that the increased resistance to heparin after operation was due to an increased platelet count. In fact the platelet count is often low immediately after operation and does not increase until the end of the second post-operative week (Dawbarn, Earlam, and Evans, 1928; Warren, Lauridsen, and Belko, 1953), when the heparin test is again normal. Fig. 2 shows that the heparin resistance test correlates better with the eosinophil count than with the platelet count, although there was in this case an immediately post-operative slight rise in platelets, which is not significant when the error of the platelet count is considered (Biggs and Macmillan, 1948). This correlation appears to support the hypothesis that the increase in resistance to the effect of heparin is related to the increased amount of A.C.T.H. in the blood as a result of operation (Bornstein and Trewella, 1950).

Table I

RESULTS OF THE HEPARIN RESISTANCE TEST IN 20 CASES

<table>
<thead>
<tr>
<th>Case Nos.</th>
<th>12</th>
<th>18</th>
<th>21</th>
<th>22</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.D. Values</td>
<td>53</td>
<td>38</td>
<td>100</td>
<td>120</td>
<td>122</td>
<td>72</td>
<td>54</td>
<td>92</td>
<td>107</td>
<td>92</td>
</tr>
<tr>
<td>Mean</td>
<td>53</td>
<td>38</td>
<td>100</td>
<td>120</td>
<td>122</td>
<td>72</td>
<td>54</td>
<td>92</td>
<td>107</td>
<td>92</td>
</tr>
</tbody>
</table>

A = pre-operation. B = post-operation. Clotting delay (C.D.) values expressed as percentage of control C.D. value obtained simultaneously.

Fig. 1.—Partial gastrectomy in a man aged 44. Fall in eosinophils and heparin clotting delay after operation.
Six cases receiving insulin shock therapy showed similar changes in the clotting delay and eosinophil count. The mean clotting delay before the insulin was given was 100% of the control and four hours after the coma had been interrupted it was only 25%. This fall is highly significant (t=5.6; p<0.001).

Results of Administration of A.C.T.H.

The effect of the administration of A.C.T.H. on the heparin resistance and Lee and White whole blood clotting time of four patients under treatment for various ophthalmic disorders was investigated. Three of these showed a transient fall in the clotting delay after A.C.T.H. had been administered, but this returned to the previous level later although the A.C.T.H. therapy was continued. The Lee and White clotting time showed similar changes. Fig. 4 illustrates a typical case.

Results in Cases Treated with Insulin and Electro-convulsions

In view of these results it was decided to investigate other kinds of "stress," and four cases receiving electro-convulsion therapy and six receiving insulin shock therapy for psychiatric disorders were investigated in the same way.

Fig. 3 shows the mean of the results of the heparin resistance tests and eosinophil counts of four acute schizophrenic or depressive patients treated with electro-convulsion therapy. It will be seen that there was a fall in the clotting delay and eosinophils from the initial level four hours after the shock, and a rise towards normal in both values 24 hours later. Owing to the small number of cases available and the variability of the clotting delay reading 28 hours after the shock the figures are not this time significant if all these values are considered. Nevertheless the difference between the pre-shock and four hours post-shock values taken alone are significant.
From these results it might be expected that cases of Addison's disease would show a prolonged heparin clotting delay, and one such case, a woman aged 47, admitted in an Addisonian crisis, has been investigated. The clotting delay on admission was 260% of the control, the highest value found in this investigation, and fell to 84% four weeks later during treatment with "eucortone" and D.O.C.A.

Adrenalin is said to have an effect on the pituitary, stimulating it to release A.C.T.H. (Roche et al., 1950) and in some cases causes a fall in the eosinophil count. Fig. 5 shows the effect on the clotting delay of a subcutaneous injection in a normal person of 1 mg of adrenalin tartrate.

If adrenocortical hormones increase blood coagulability, then it might be expected that there would be a risk of thrombosis during therapy with A.C.T.H. and cortisone. Cosgriff (1951) and Coste, Galmiche, Piguet, Delbarre, and Laurent (1951) have described altogether 34 such cases and we have observed a similar one. This patient was a man aged 59, diagnosed four years before the present incident as a case of mycosis fungoides. He had found that the only treatment which kept him reasonably well was large doses of cortisone which he provided at his own expense. He had been receiving 250 mg. cortisone daily for 12 months when in December, 1952, he developed thrombophlebitis in the veins of the right leg followed by a small pulmonary embolus. This incident was treated in a nursing-home, and records are not available. In March, 1953, the thrombophlebitis recurred and he was admitted to hospital for anticoagulant therapy. He continued to take 250 mg. cortisone daily, and excessively large doses of "tromexan" were required to depress the "prothrombin" efficiency level. An initial dose of 600 mg. lowered it on the following day to only 58% of the normal level and the dose was therefore raised to 900 mg. on the second, 1,200 mg. on the third, and 1,500 mg. on the fourth day. On the fifth day of therapy the "prothrombin" level was 27% and the dosage was continued at 1,200 mg. a day until the eighteenth day, when the "prothrombin" level fell suddenly to 5%. The "tromexan" dosage was then reduced.

This case indicates the resistance to "tromexan" therapy of patients receiving cortisone. Coste et al. (1951) recorded a similar case in which heparin treatment did not prolong the coagulation time.

Discussion

These results support the view that adrenocortical hormones cause an increase in the coagulability of the blood and are in agreement with those of Cosgriff, Diefenbach, and Vogt (1950). On the other hand, McGraw, Margulis, and Bruch (1952) consider that A.C.T.H. tends to delay coagulation and that thrombosis occurs when it is suddenly withdrawn from patients who have been receiving it, unlike the case reported above. It has long been known, however, that "stress" and haemorrhage in the initial or "alarm reaction" stage cause a decreased clotting time. This was noted by William Hewson in 1771
and has been repeatedly confirmed since. Thus Macht (1952) records the shortening of clotting time in fright and anxiety, and Stoker (1952) proposes that this may account for the increased incidence of phlebothrombosis in patients treated in the unfamiliar environment of hospital compared with those treated at home. The occurrence of coronary thrombosis after operation and shock is also well known (Davis, Parlante, and Hallsted, 1951) and cerebral thrombosis is recognized as a complication of insulin shock therapy (Donnelly and Radley-Smith, 1950).

Interesting relationships between heparin, cortisone, and eosinophils have also been described by other authors. Thus De Takats and Marshall (1952), in a paper published while this work was in progress, noted a similar fall in heparin clotting time after operation and adrenalin injection as measured by a simplified in vitro technique. This fall in clotting time usually, but not invariably, occurred almost simultaneously with the fall in the eosinophil count. Godowski (1951) stated that previous heparinization prevented the fall in the eosinophil count occurring when cortisone or A.C.T.H. was given in vivo, and Muehrcke, Staple, and Kark (1952) found that this effect could also be demonstrated with cortisone in vitro, although Godowski (1952), using different dosages, was unable to confirm this.

Increased resistance of the clotting time to the effect of heparin has also been reported in two of the collagen diseases treatable with A.C.T.H. and cortisone. These are rheumatic fever (Abrahams, Glynn, and Loewi, 1951) and lupus erythematosus (Borrie, 1951). It is of interest to note that heparin has been reported to be of therapeutic value in rheumatic fever (Glazebrook and Wrigley, 1949; Donzelot and Kaufmann, 1949). These observations recall those of Macht (1943) on the effect of heparin in preventing experimental anaphylactic reactions and revive speculations that heparin may have functions other than those of an anticoagulant (Astrup, 1945: Magerl, 1942). In this connexion it is interesting to note that heparin is a powerful inhibitor of hyaluronidase (Glick and Sylvén, 1951). On the other hand, they may simply indicate an altered polysaccharide metabolism brought about by changes in the circulating adrenocortical hormones.

Summary

Statistically significant evidence is produced for a lessening of the effect of heparin on the plasma clotting time in the first 48 hours after operation. It is shown that similar effects occur after insulin coma and electro-convulsion therapy.

These changes occur at approximately the same time as the fall in the eosinophil count and are assumed to be due to increased adrenocortical hormone production.

Patients receiving A.C.T.H. may show similar changes and there is a danger that A.C.T.H. and cortisone treatment may be complicated by thrombosis which is resistant to anticoagulant therapy.

The implications of these findings are discussed.

I am indebted to the physicians and surgeons of the Sheffield Royal Hospital and Royal Infirmary and to the Superintendent of Middlewood Hospital for access to cases, to Miss C. Rosemann, of the Department of Social Medicine, Sheffield University, for the statistical analysis, and to Dr. E. K. Blackburn and Dr. A. Jordan for help and advice.

References