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TET2 promoter methylation in low-grade diffuse
gliomas lacking /IDH1/2 mutations
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ABSTRACT

Background Miscoding mutations of the TET2 gene,
which encodes the a-ketoglutarate-dependent enzyme
that catalyses the conversion of 5-methylcytosine to
5-hydroxymethylcytosine, thus producing DNA
demethylation, have been detected in 10—25% of acute
myeloid leukaemias lacking /DH7/2 mutations. Most
low-grade diffuse gliomas carry /DH1/2 mutations
(>85%), but molecular mechanisms of pathogenesis in
those lacking /DH1/2 mutations remain to be elucidated.
Methods Miscoding mutations and promater
methylation of the TET2 gene were screened for in

29 low-grade diffuse gliomas lacking /DH1/2 mutations.
Results Single-strand conformational polymorphism
followed by direct sequencing showed the absence of
miscoding mutations in TET2. Methylation-specific PCR
revealed methylation of the TET2 promoter in 5 of 35
cases (14%). In contrast, none of 38 low-grade diffuse
gliomas with /DH1/2 mutations had TET2 promoter
methylation (p=0.0216).

Conclusion Results suggest that TET2 promoter
methylation, but not 7TET2 mutation, may be an
alternative mechanism of pathogenesis in a small
fraction of low-grade diffuse gliomas lacking IDH1/2
mutations.

INTRODUCTION

IDH1/2 mutations are very frequent (>85% of
cases) in astrocytic and oligodendroglial diffuse
gliomas (WHO grades II and III) as well as in
secondary glioblastomas (WHO grade IV) that are
derived from diffuse astrocytomas or anaplastic
astrocytomas.' ? In contrast, IDH1 mutations are
very rare or absent in other neoplasms of the
central nervous system or tumours of other organ
sites, including cancers of the bladder, breast,
stomach, colorectum, lung, ovary and prostate.®~>
The only exceptions so far include acute myeloid
leukaemia (AML; up to 20%),°!' melanomas
(approximately 10%)'* and anaplastic thyroid
cancer (approximately 10%)."* In contrast to
diffuse gliomas in which [DH1 mutations are
significantly more frequent than [DH2 muta-
tions,!* IDH1 and IDH2 mutations were detected at
similar frequencies in AML.* '

Recently, the TET2 (ten-eleven-translocation 2)
gene at chromosome 4q24 has been found to
be mutated in 10—25% of cases of AML, myelo-
dysplastic ~syndrome and myeloproliferative
neoplasms.’® 7 Interestingly in AML, IDH1/2
mutations and TET2 mutations were mutually
exclusive, and importantly, both IDH1/2 and TET2
mutations were associated with epigenetic defects

and a hypermethylation signature.” These obser-
vations suggest that TET2 mutations represent an
alternative molecular mechanism in the develop-
ment of AML lacking IDH1/2 mutations.

Epigenetic defects that resemble those seen in
AML with either IDH1/2 or TET2 mutations have
been recognised in gliomas carrying IDH1/2 muta-
tions. In a study by Noushmehr et a/,'® a distinct
subset of glioblastomas showed concerted CpG
island methylation at a large number of loci; these
tumours typically carry IDH1/2 mutations. In
a study of 131 brain tumours, hypermethylation of
CpG loci was strongly associated with IDH1/2
mutations.'”

These findings prompted us to screen for TET2
mutations in low-grade diffuse gliomas lacking
IDH1/2 mutations. We also assessed TET2 promoter
methylation, since this has recently been reported
in a small fraction (4.4%) of myeloproliferative
neoplasms (essential thrombocythemia).?”

MATERIALS AND METHODS

Tumour samples

A total of 73 tumour samples of low-grade diffuse
gliomas (WHO grade II) were obtained from
the Department of Neuropathology, University
Hospital Ziirich, Switzerland, Department of
Neuropathology, University Hospital Frankfurt,
Germany, Institute of Neuropathology and
Department of Neurosurgery, University Hospital
Miinster, Germany, Department of Neurosurgery;,
University Hospital Bern, Switzerland, and Insti-
tute of Neuroscience, Bordeaux, France.

Low-grade diffuse gliomas lacking IDH1/2
mutations (total 35 cases) were diffuse astrocy-
toma (17 cases), oligoastrocytoma (6 cases) or
oligodendroglioma (12 cases); those carrying
IDH1/2 mutations (total 38 cases) were diffuse
astrocytoma (17 cases), oligoastrocytoma (9 cases)
or oligodendroglioma (12 cases). The mean age
of the patients was 40.1x14.7 years (range
5—82 years). Fifty-six patients were treated with
surgery alone and 13 patients with surgery followed
by radiotherapy. None of the patients were treated
with chemotherapy. This study was approved by
ethical committees in each collaborative centre as
well as by the IARC ethical committee.

TET2 mutations

We screened for mutations of the TET2 gene at
exons 3—11 containing the conserved domains
1 and 2, in which approximately 90% of all
mutations have been detected in AML and
myeloid disorders'” *' 2% in 29 low-grade diffuse
gliomas lacking IDH1/2 mutations. Single-strand
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Figure 1 Methylation-specific PCR analysis of the TET2 promoter
region in low-grade diffuse gliomas. (A) Without /DH7/2 mutations
(14%); (B) with /IDH1/2 mutations (0%). MS, molecular size marker; U,
PCR product amplified by unmethylated-specific primers; M, PCR
product amplified by methylated-specific primers; NC, normal control;
PC, positive control (universal methylated DNA).

conformational polymorphism (SSCP) analysis was carried out
to pre-screen for mutations in exons 3—11 of the TET2 gene, as
described previously.”® The primer sequences are available on
request. DNA samples containing /[DH1 mutations and H,O
served as positive and negative controls, respectively. Samples
exhibiting mobility shifts in SSCP analyses were subsequently
analysed by direct sequencing using an ABI 3100 PRISM DNA
sequencer (Applied Biosystems, Foster City, California, USA)
with the Big Dye Terminator cycle sequencing kit (ABI PRISM,
Applied Biosystems).

TET2 promoter methylation

Methylation-specific PCR was carried out in 35 low-grade diffuse
gliomas without IDH7/2 mutations and 38 low-grade diffuse
gliomas with [DH1/2 mutations, to assess TET2 promoter
methylation using primers reported by Chim e al.?’ For each
methylation-specific PCR reaction, we included universal meth-
ylated DNA (Chemicon International, Temecula, California,
USA) as positive control, and normal blood DNA as negative
control.?* Direct sequencing confirmed bisulfite-modified DNA
in the positive control. Quality controls for bisulfite conversion
were performed for each reaction, as previously described.?’

RESULTS
No miscoding mutations of TET2 were detected in the 29 low-
grade diffuse gliomas lacking IDH1/2 mutations that we analysed.
Methylation-specific PCR showed TET2 promoter methyla-
tion in 5 of 35 (14%) low-grade diffuse gliomas lacking IDH1/2
mutations (three diffuse astrocytomas and two oligoden-
drogliomas; figure 1). None of 38 low-grade diffuse gliomas
carrying IDH1/2 mutations showed TET2 promoter methyla-
tion. The difference in frequency of TET2 promoter methylation
in tumours with and without TET2 promoter methylation was
statistically significant (p=0.0216). The median survival of
patients was not significantly different between cases with or
without TET2 promoter methylation.

DISCUSSION

Mammalian DNA contains two modified cytosine bases, 5-
methylcytosine (5mC) and 5-hydroxymethylcytosine (ShmC).%
Of these, 5SmC is known to play a significant role in epigenetic
modification involved in gene regulation, X-chromosome inac-
tivation, genomic imprinting and cancer development.® In
contrast, attention has only recently been drawn to 5hmC,
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Take-home messages

> In contrast to acute myeloid leukaemia, ten-eleven-trans-
location 2 (TET2) mutations are absent in low-grade diffuse
gliomas lacking IDH1/2 mutations.

» TET2 promoter methylation is present in a small fraction of
low-grade diffuse gliomas lacking IDH1/2 mutations.

» TET2 promoter methylation, but not TET2 mutation, may be an
alternative mechanism of pathogenesis in a small fraction of
low-grade diffuse gliomas lacking IDH1/2 mutations

with the report that the TET family catalyses the conversion
of 5mC to 5hmC,?® ¥ and that one of the enzymes in this
family, TET2, is frequently mutated in myeloid neoplasms.'® !/
The formation of 5ShmC can lead to DNA demethylation, which
may contribute to the dynamics of DNA methylation.?
The conversion of 5mC to ShmC by TET2 is a-ketoglutarate
(2-KG)-dependent.?” 2

IDH1 and IDH2 are enzymes that catalyse the interconversion
of isocitrate and a-KG.” ® 2° 3% IDH1/2 mutations impair
enzyme affinity and dominantly inhibit wild-type IDH1/2
activity through the formation of catalytically inactive hetero-
dimers,®! which leads to down-regulation of a-KG and up-regu-
lation of 2-hydroxyglutarate."® 3% Decrease in a-KG expression
results in up-regulation of HIF-1e and its targets, such as GLUT1,
VEGF and PGK1 in U87MG malignant glioma cells.** Thus, the
functions of TET2 and IDH1/2 may be linked via a-KG.

The present study shows the absence of TET2 mutations in
low-grade diffuse gliomas lacking IDH1/2 mutations. Thus, in
contrast to AMLs, mutational inactivation of the TET2 gene is
not a mechanism of pathogenesis in low-grade diffuse gliomas.

Recent studies suggest that TETZ is a tumour suppressor
gene, since TET2 mutations have been detected in 10—25%
of AMLs, myelodysplastic syndrome and myeloproliferative
neoplasms,’® '/ and TETZ2 promoter methylation has been
reported in a small fraction (4.4%) of myeloproliferative
neoplasms.?® Loss at the TET2 locus (4g24) has been observed in
a small fraction of glioblastomas (2%).*> We postulated that
TET2 promoter methylation may occur in gliomas. Indeed, in
the present study we show TET2 promoter methylation in
a fraction of low-grade diffuse gliomas lacking /DH1/2 muta-
tions (14%). In contrast, none of 38 low-grade diffuse gliomas
carrying IDH1/2 mutations had TET2 promoter methylation
(p=0.0216). These results suggest that TET2 promoter methyl-
ation, but not TET2 mutation, may be an alternative mechanism
of pathogenesis in a small fraction of low-grade diffuse gliomas
lacking IDH1/2 mutations. However, the low frequency of
methylation of the TET2 promoter in low-grade diffuse gliomas
suggests that there may be other, as yet unknown, mechanisms
of glioma development that do not involve the TET2 or IDH1/2
pathways.
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