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Abstract
Cyclin-dependent kinase 12 (CDK12) belongs to the 
cyclin-dependent kinase (CDK) family of serine/threonine 
protein kinases that regulate transcriptional and post-
transcriptional processes, thereby modulating multiple 
cellular functions. Early studies characterised CDK12 
as a transcriptional CDK that complexes with cyclin 
K to mediate gene transcription by phosphorylating 
RNA polymerase II. CDK12 has been demonstrated 
to specifically upregulate the expression of genes 
involved in response to DNA damage, stress and heat 
shock. More recent studies have implicated CDK12 
in regulating mRNA splicing, 3’ end processing, pre-
replication complex assembly and genomic stability 
during embryonic development. Genomic alterations in 
CDK12 have been detected in oesophageal, stomach, 
breast, endometrial, uterine, ovarian, bladder, colorectal 
and pancreatic cancers, ranging from 5% to 15% of 
sequenced cases. An increasing number of studies point 
to CDK12 inhibition as an effective strategy to inhibit 
tumour growth, and synthetic lethal interactions have 
been described with MYC, EWS/FLI and PARP/CHK1 
inhibition. Herein, we discuss the present literature on 
CDK12 in cell function and human cancer, highlighting 
important roles for CDK12 as a clinical biomarker 
for treatment response and potential as an effective 
therapeutic target.

Introduction
CDK12 (cyclin-dependent kinase 12; CRKRS, 
CRKR or CRK7) was first identified from cDNA 
screens for cell cycle regulators related to cdc2 
kinases.1 In contrast to cyclin-dependent kinases 
(CDKs) that promote transition between different 
phases of the cell cycle, CDK12 is a transcriptional 
CDK with specific roles in regulating transcription 
of genes involved in cellular responses to DNA 
damage and stress.2–4 Emerging studies continue 
to dissect the role of CDK12 in cell function and 
cancer and have illuminated its potential clinical use 
as a biomarker and therapeutic target.

Structure and expression
On chromosome 17q12, the CDK12 gene encodes 
a 1490 amino acid protein with a molecular weight 
of 164 kDa.5 The closely related CDK13 (located 
on 7p14) shares 43% sequence homology and a 
largely conserved kinase domain (KD) (figure  1). 
The central KD mediates phosphorylation of RNA 
Pol II,6 consisting of ~300 amino acids that shares 
42% identity to human cdc2 and featuring charac-
teristic analogous threonine and tyrosine residues 
required for cdc2 inactivation.5

Arginine/serine-rich (RS) motifs are critical 
components of proteins involved in pre-mRNA 

processing and can function as a nuclear localiza-
tion signal.7 CDK12 contains 21 RS motifs within 
the first 400 amino acids.5 Proline-rich motifs are 
found between the RS domain and central KD as 
well as at the C-terminal region (figure 1). These 
regions contain consensus binding sites for SRC 
Homology 3 and WW domains, indicating poten-
tial protein interaction partners from a wide range 
of signalling pathways.8 9 A unique C-terminal helix 
outside the canonical kinase fold of CDK12 facili-
tates its interaction with cyclin K.10 11 The flexibility 
of this C-terminal extension was found to be critical 
for the kinase and ATP-binding activity of CDK12 
and has directed the development of novel inhibi-
tors to CDK12/13.12 13

CDK12 is ubiquitously expressed, as demon-
strated by human tissue northern blots in a panel 
of RNAs from different human tissues.5 RNA 
sequencing analysis and immunohistochemical 
staining of 95 human individuals representing 
27 tissue types also detected CDK12 in all tested 
tissues.14 Compared with other tissues, higher 
CDK12 expression was generally detected in male 
and female reproductive tissues, endocrine tissues, 
bone marrow, spleen and lymph nodes. Staining for 
CDK12 expression was also mainly localised to the 
nucleus, as suggested by its RS motifs and cellular 
functions.14

Functions
CDK12 functions as a complex with cyclin K, with 
its most well-characterised roles in the regulation 
of gene transcription.3 The strong functional link 
between CDK12 and cyclin K is reflected in the fact 
that knockdown of either protein results in similar 
phenotypes and affected genes, leading to genomic 
instability.3

Transcription, mRNA processing and the DNA 
damage response
The CDK12/cyclin K complex phosphorylates RNA 
Pol II at Ser2 (Ser2p-RNA Pol II), which is thought 
to be a critical step in transition from transcriptional 
initiation to elongation3 6 15 16 (figure 2A). In vitro, 
CDK12/cyclin K was also shown to phosphorylate 
Ser5 of RNA Pol II, suggesting potential regula-
tion of transcription initiation.11 In cells depleted 
of CDK12, expression microarrays demonstrated 
that only 2.67% of tested microarray genes were 
altered.3 Moreover, of the genes altered, the 
majority were downregulation of genes with large 
numbers of exons. Gene classification revealed an 
enrichment of genes involved in DNA replication, 
recombination and repair centred on the BRCA1 
module, and cells with knockdown of CDK12 had 
significantly lower levels of BRCA1, ATR, FANCI 
and FANCD2.3 CDK12 or cyclin K knockdown 
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Figure 1  Schematic structures of the CDK12 and CDK13 genes and chromosomal location of the respective genes. CDK, cyclin-dependent kinase; 
KD, kinase domain; PRM, proline-rich motifs; RS, arginine/serine rich motifs.

Figure 2  Known functions of CDK12. (A) CDK12 phosphorylates 
RNA polymerase II (RNA Pol II) at Ser2, which promotes transcriptional 
elongation. (B) CDK12 interacts with RNA-processing factors to regulate 
splicing. (C) CDK12-mediated phosphorylation of RNA Pol II couples 
transcription and mRNA 3’ end processing. CDK12 reportedly regulates 
the expression of a distinct subset of genes, including those involved in 
the DNA damage response, cellular stress and heat shock. CDK, cyclin-
dependent kinase.

sensitised cells to DNA-damaging agents,3 suggesting that 
CDK12/cyclin K is a master regulator of proteins specifically 
involved in DNA damage repair (DDR) and response to DNA 
damage. CDK12 was also reportedly required for function of 
CncC, the Drosophila homolog of the stress-activated Nrf2 
transcription factor, and expression of oxidative stress response 
genes, but not that of general housekeeping genes or cell 
viability.4 Collectively, these studies indicate that CDK12 regu-
lates specific subsets of genes involved in cellular responses to 
DNA damage, stress and heat shock.3 4 6

The characteristic RS motifs of CDK12 strongly indicate func-
tions in pre-mRNA processing.5 Splicing factors are thought to be 
stored in subnuclear structures known as nuclear speckles,17 and 
CDK12 localises to nuclear speckles and spliceosome compo-
nents.5 Indeed, mass spectrometry of CDK12-associated proteins 
identified a strong enrichment for RNA-processing factors18 and 
an enrichment of genes involved in RNA splicing machinery19 
(figure 2B). These studies also showed that CDK12 regulates the 
expression and alternative last exon (ALE) splicing of genes with 
long transcripts and large numbers of exons.19 CDK12 can also 
indirectly regulate RNA processing by regulating phospho-epi-
topes on the C-terminal domain of RNA Pol II.18

Ser2p-RNA Pol II couples transcription and mRNA 3’ end 
processing by interacting with polyadenylation and termination 
machinery at the 3’ ends of mRNA.20 Davidson et al demon-
strated that CDK12-mediated phosphorylation of Ser2p-RNA 
Pol II recruits the cleavage and polyadenylation factor CstF77 
to ensure efficient 3’ end formation21 (figure 2C). CDK12 was 
demonstrated to be required for optimal pre-mRNA processing 
of the MYC gene, with gene depletion reducing levels of polyad-
enylated MYC RNA.21

DNA replication
A recent study demonstrated that the CDK12/cyclin K complex 
is required for mammalian cell proliferation.22 Specifically, 
CDK12/cyclin K mediates phosphorylation of cyclin E1 at 
Ser366, which blocks interaction with its binding partner, 
CDK2, during pre-replicative complex assembly in early G1 
phase.22 Although cyclin E/CDK2 normally accumulates at the 
G1/S transition to promote S phase entry, aberrant cyclin E1/
CDK2 activity in early G1 has been shown to inhibit pre-rep-
licative complex formation.23 Regulation of efficient pre-rep-
lication complex assembly by CDK12/cyclin K suggests novel 
roles in mediating crosstalk between DNA replication and gene 
transcription.22

Development
CDK12 expression is critical in mouse embryonic development. 
In vivo, Cdk12 activity was found to be critical from stage E3.5, 
and Cdk12 deficiency leads to arrest and embryonic lethality by 
stage E6.5.24 Cdk12-/- embryos grown in vitro display sponta-
neous DNA damage and reduced expression of DNA damage 
response genes, including Atr, Brca1, Fanci and Fancd2.24 
CDK12/13 and cyclin K are also required for self-renewal in 
embryonic stem cells, with knockdown of these proteins leading 
to differentiation.25 Roles in proper development of neural cells 
have been described, with mice expressing conditional dele-
tion of Cdk12 in neural progenitor cells (NPCs) dying shortly 
after birth and exhibiting microcephaly. NPCs of these mutant 
mice also displayed lower expression of DDR genes, increased 
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Figure 3  Genomic alterations of the CDK12 gene across TCGA. Data downloaded from TCGA Provisional data sets on cBioportal (http://www.
cbioportal.org/) in May 2018. CDK, cyclin-dependent kinase; TCGA, The Cancer Genome Atlas.

double-strand breaks and increased apoptosis.26 These findings 
recapitulate critical roles for CDK12 in maintaining genomic 
stability and expression of DDR genes in development.

CDK12 and CDK13 are known to share similar biological 
processes, with both regulating RNA splicing and alternative 
splicing by virtue of their RS motifs,27–29 maintaining self-re-
newal in mouse embryonic stem cells25 and regulating axonal 
elongation.30 Despite their similarity in sequence and interaction 
with cyclin K, CDK12 and CDK13 do not have identical func-
tions and are likely to have evolved separately from a common 
ancestor gene.30 Recent studies indicate that CDK13 regulates 
distinct subsets of genes and biological processes from CDK12, 
including snRNA and snoRNA gene expression,31 and extracel-
lular/growth signalling pathways.32

Cdk12 mutations in human tumours
Analysis of the CDK12 gene across The Cancer Genome Atlas 
(TCGA) revealed mutations, amplifications or deep deletions in 
30/32 tumour types (figure 3). Tumour types with the highest 
percentage of cases with aberrant CDK12 (ranging from 5% 
to 15% of sequenced cases) include oesophageal, breast, endo-
metrial, uterine and bladder carcinomas. Stomach, colorectal, 

pancreatic ductal and ovarian serous adenocarcinomas also 
feature significant levels of aberrations.

The functional roles of CDK12 gene mutations, amplifica-
tions, deletions or variations in its expression remain incompletely 
understood, with both tumour-suppressive and tumorigenic roles 
proposed for CDK12. As far as its tumour-suppressive roles, two 
studies33 34 have reported that the majority of CDK12 mutations in 
high-grade serous ovarian carcinoma (HGSOC) are homozygous 
point mutations in the KD that abrogate the catalytic activity of 
CDK12. Loss-of-function of CDK12 results in decreased homolo-
gous recombination and enhanced sensitivity to DNA cross-linking 
agents and poly (ADP-ribose) polymerase (PARP) inhibitors.

Inactivation of the CDK12 gene has been associated with a 
unique genomic instability pattern characterised by up to 800 
tandem duplications (TD; up to 10 Mb in size) per tumour that 
were quasi-randomly distributed along the genome.35 Denoted 
the CDK12 TD-plus phenotype, these TDs affected over 10% 
of the genome and were observed in 4% of serous ovarian carci-
nomas and up to 2% of prostate adenocarcinomas.35

On chromosome 17, the CDK12 gene is located approxi-
mately 200 kb proximal to the HER2 (ERBB2) oncogene and 
is frequently coamplified in breast tumours.36 37 In cohorts 
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Figure 4  Potential for clinical use of CDK12 as a biomarker and/or therapeutic target. (A) CDK12 mutations that confer loss of function have been 
reported to promote genomic instability, rendering cancer cells more susceptible to PARP/CHK inhibitors. (B) On the other hand, CDK12 mutations 
that cause gain of function (eg, amplification) could theoretically potentiate cancer cell survival by promoting expression of DNA damage repair 
genes. Though there are currently few reports of this, such a situation would enable use of CDK12 as a biomarker of drug response/clinical outcome or 
as a drug target. (C) In cases where CDK12 is not necessarily mutated, CDK12 can enable tumour progression driven by genes such as MYC and EWS/
FLI. These synthetic lethal interactions also provide an opportunity for therapeutic targeting. CDK, cyclin-dependent kinase.

of primary breast cancer, high CDK12 expression correlated 
with HER2 status, suggesting oncogenic roles for CDK12 in 
this context.38 Tumorigenic roles for CDK12 were recently 
proposed through ALE splicing of DNAJB6, a HSP40 family 
chaperone, which promoted cell invasion and migration in 
HER2-amplified breast tumour cells.19 Other studies reported 
that 13% of HER2-positive breast cancers showed out-of-frame 
rearrangements of CDK12 resultant from the amplification 
breakpoint in the HER2 amplicon converging on CDK12.39 
This led to decreases in CDK12 expression, loss-of-function 
and sensitivity to PARP inhibitors.39 In HER2-amplified MKN7 
gastric cancer cells, gene fusions involving CDK12 and HER2 
were reported.40 These fusion transcripts were predicted to 
result in truncation of CDK12 protein, but were not in-frame 
to HER2. CDK12 mutations have also been reported in 
non-small cell lung cancer,41 lung adenocarcinoma,42 follicular 
lymphoma,43 oesophagogastric tumours44 and advanced carci-
noma of unknown primary.45

It is clear from these studies that the functional implications of 
CDK12 mutations are case-dependent and context-dependent. 
Continued elucidation of the specific roles of CDK12 will be 
important for its use as a biomarker to inform patient stratifica-
tion for therapeutic intervention38 (figure 4).

Cdk12 as a therapeutic target: SYNTHETIC lethal 
partners in the context of cancer
In addition to its potential role as a clinical biomarker, recent 
studies have highlighted CDK12 as a therapeutic target for 
cancer (figure 4). Inhibition of transcriptional CDKs could be an 
effective strategy to overcome resistance to targeted therapies, 
including erlotinib and crizotinib.46 Numerous other studies 
have identified specific genetic or cellular contexts that confer 
enhanced sensitivity to CDK12 inhibition, including MYC 
dependency, PARP inhibition and EWS/FLI rearrangement.

MYC 
MYC is a global transcription factor and central driver of many 
human cancers, which has proven to be difficult to inhibit 
directly.47 48 To discover synthetic lethal genes with the MYC 
oncogene in an isogenic setting, we performed a siRNA screen 
using human fibroblasts with overexpression of cMYC.49 In this 
study, we first reported CDK12 as synthetic lethal with cMYC. 
These findings were corroborated in an independent study 
demonstrating that CDK inhibition triggered massive downreg-
ulation of cMYC expression and its related genes.50

Among the top genes identified as synthetic lethal with MYC 
were genes that regulate RNA polymerase II and cell cycle 
checkpoint control, including GTF2H4, POLR2E, RAD21 and 
WEE1.51 Additionally, deregulated MYC is known to induce 
replicative stress by accelerating the rate of DNA replication, 
pointing to replication-coupled DDR as a targetable weakness 
in MYC-driven tumours.52 53 The overlap between this MYC 
signature and the known cellular functions of CDK12 as well as 
the requirement of CDK12 for optimal processing of cMYC,21 
collectively indicate CDK12 could be an effective therapeutic 
target for MYC-dependent cancers.

PARP and CHK1 inhibitors
A genome-wide PARP1/2 inhibitor screen identified CDK12 
as a sensitiser to olaparib and found CDK12 mutations were a 
clinically relevant biomarker of PARP1/2 inhibitor sensitivity in 
HGSOC.54 Moreover, most HGSOC cases displaying CDK12 
mutations were mutually exclusive with BRCA1/2 mutations, 
suggesting cells can use one of multiple strategies to achieve 
similar phenotypes. Supporting this, primary and acquired resis-
tance to PARP inhibitors could be overcome by CDK12 inhibition 
in BRCA wild-type and mutated models of triple negative breast 
cancer.55 This has led to clinical trials exploring this combination 
in advanced solid tumours (NCT01434316). Recently, Paculová 
et al proposed that CDK12-deficient or BRCA1-deficient cells 
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are reliant on the downstream S phase checkpoint kinase CHK1 
for survival.56 Loss of CDK12 or BRCA1 was found to poten-
tiate the antitumour activity of CHK1 inhibitors irrespective of 
p53 status.56

EWS/FLI
Ewing sarcoma tumours are characterised by chromosomal rear-
rangements resulting in the fusion protein EWS/FLI, a potent 
transcriptional activator and transforming gene in this disease.57 
A recent study reported that inhibition of CDK12 was specifi-
cally responsible for synthetic lethality in Ewing sarcoma cells 
with EWS/FLI rearrangement.58 Treatment of these cells with the 
specific CDK12/13 inhibitor, THZ531, preferentially repressed 
expression of DDR genes and was synergistic with PARP inhib-
itors. Interestingly, CDK12 is rarely mutated in Ewing sarcoma 
tumours (TCGA), suggesting that mutations in CDK12 are not 
necessary to confer its role as an effective therapeutic target.

Tumours driven by oncogenes such as MYC and EWS/FLI are 
highly dependent on transcriptional programmes that converge 
on RNA Pol II59 60 and the need for DDR gene expression to facil-
itate rapid replication.61 Thus, impairing the function of CDK12 
as both a transcriptional coactivator and specific regulator of 
DNA damage related proteins could explain the synthetic lethal 
interactions described above, representing a promising thera-
peutic strategy for these cancer types.

Take home messages

►► Cyclin-dependent kinase 12 (CDK12) complexes with cyclin 
K to regulate transcriptional elongation, mRNA processing, 
proliferation and development. It regulates specific subsets of 
genes involved in cellular responses to stress, heat shock and 
DNA damage.

►► Genomic alterations in CDK12 are frequently observed in 
human cancers. In high-grade serous ovarian carcinoma, 
HER2-positive breast cancer and lung adenocarcinoma, 
loss-of-function mutations have been reported, which 
decrease homologous recombination and enhance sensitivity 
to chemotherapy and PARP inhibitors. In contrast, CDK12 
gene amplification could contribute to cancer fitness by 
constitutive engagement of DNA repair pathways.

►► Synthetic lethal interactions have been reported for CDK12 
with MYC, EWS/FLI and PARP inhibitors and have led to 
growing interest as a therapeutic target and biomarker for 
response in cancer treatment.
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