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ABSTRACT
Clinical workflows in oncology depend on predictive and 
prognostic biomarkers. However, the growing number 
of complex biomarkers contributes to costly and delayed 
decision-making in routine oncology care and treatment. 
As cancer is expected to rank as the leading cause of death 
and the single most important barrier to increasing life 
expectancy in the 21st century, there is a major emphasis on 
precision medicine, particularly individualisation of treatment 
through better prediction of patient outcome. Over the past 
few years, both surgical and pathology specialties have 
suffered cutbacks and a low uptake of pathology specialists 
means a solution is required to enable high-throughput 
screening and personalised treatment in this area to alleviate 
bottlenecks. Digital imaging in pathology has undergone 
an exponential period of growth. Deep-learning (DL) 
platforms for hematoxylin and eosin (H&E) image analysis, 
with preliminary artificial intelligence (AI)-based grading 
capabilities of specimens, can evaluate image characteristics 
which may not be visually apparent to a pathologist and 
offer new possibilities for better modelling of disease 
appearance and possibly improve the prediction of disease 
stage and patient outcome. Although digital pathology and 
AI are still emerging areas, they are the critical components 
for advancing personalised medicine. Integration of 
transcriptomic analysis, clinical information and AI-based 
image analysis is yet an uncultivated field by which 
healthcare professionals can make improved treatment 
decisions in cancer. This short review describes the potential 
application of integrative AI in offering better detection, 
quantification, classification, prognosis and prediction of 
breast and prostate cancer and also highlights the utilisation 
of machine learning systems in biomarker evaluation.

INTRODUCTION
Developments in artificial intelligence (AI) technology 
have allowed the mining of previously hidden data 
from routine histology images of cancer, providing 
potentially clinically meaningful information. The 
considerable degree of uncertainty in traditional 
pathology analysis when determining whether 
patients have indolent or aggressive disease leads to 
overtreatment of patients and subsequent secondary 
complications (eg, surgical complications including 
sepsis, chemotherapy-associated toxicity), significantly 
impacting patients’ quality of life. Routinely available 

tumour tissue contains an abundance of clinically rele-
vant information that is currently not fully exploited. 
Timely and accurate investigation of tumour histo-
morphology is critical, and determining pertinent 
prognostic markers is the key to personalised cancer 
management. Machine learning (ML) techniques 
are commonly used in biomarker development and 
increases in labelled/annotated data and images are 
enabling deep neural networks (DNNs).1 Recently, 
studies have shown that DNN models based on digi-
tised slides have potential in several cancer types in 
areas including tumour diagnosis, prognostic predic-
tion and identification of pathological features such as 
biomarkers.2–4

CLINICAL NEED
Breast cancer is the most common form of cancer 
diagnosis in women (excluding nonmelanoma skin 
cancer), with over 2 million women diagnosed world-
wide annually.5 Breast cancer is a heterogeneous 
disease that still presents challenges for clinicians 
in predicting the likelihood of disease progression, 
particularly in patients where the disease is detected 
in the early stages. To manage the increasing volume 
of breast cancer cases, we need to meaningfully 
interpret breast cancer progression to establish prog-
nostic factors and limit the number of patients going 
for unnecessary treatments. Approximately 30% of 
patients develop a recurrence of the disease within 
10 years and, therefore, require aggressive chemo-
therapy.6 However, it is quite difficult to differentiate 
between those whose disease will or will not recur. 
Most early stage patients with breast cancer are treated 
with chemotherapy, despite many not benefiting from 
such treatment, thereby exposing these individuals 
to severe side effects. Hence, unwarranted treatment 
burdens healthcare systems with additional patients 
and with huge associated costs. The need for carefully 
collected clinical tissues being made available to inves-
tigators is key to facilitate advancement of diagnostics, 
thus making initiatives such as the Innovative Medi-
cine Initiative’s (IMI) Big Picture Consortium pivotal 
in allowing greater wide-spread access to data.7 Recent 
legislative changes have made this more difficult and 
both surgical and pathology support are needed at 
a senior level to enable high-throughput screening 
and personalised treatment in this area to alleviate 
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bottlenecks.8 There is a definitive clinical need for the development 
of a highly sensitive and specific prognostic assay (figure 1). The 
ideal test should give a low/high risk (binary) output to allow for 
easier decision-making, while also being highly accurate in terms of 
its ability to differentiate between patient classes that may benefit 
from aggressive treatment.

Similarly, prostate cancer is the second most common cancer 
in men (after nonmelanoma skin cancer) and approximately one 
in six men will be diagnosed with prostate cancer during their 
lifetime.5 There are approximately 1.2 million men diagnosed 
worldwide annually with prostate cancer representing 7.1% of 
all cancers in men.9 According to the American Cancer Society, 
248 530 men will be diagnosed with prostate cancer in the USA 
in 2021.10 As a result of prostate-specific antigen (PSA) screening 
and digital rectal examination testing, many prostate cancers are 
now detected at an early stage. Approximately 80% of men have 
slow growing or indolent prostate cancer and can leave their 
disease untreated while undergoing frequent monitoring known 
as active surveillance. The remaining 20% of patients have 
aggressive prostate cancer, which requires aggressive treatment.11

Clinical decision-making for prostate cancer is set out in the 
European Association of Urology (EAU) guidelines from localised 
to advanced therapy.12 These are informed by clinical features with 
increasing inclusion of genomics and molecular biomarkers.13 Poten-
tial biomarkers should provide additional independent information 
from already established clinical and pathological variables, to 
improve the predictive accuracy for prostate cancer diagnosis, prog-
nosis and treatment response. Current clinical tools cannot deter-
mine the true risk of metastases, thus accurately identifying patients 
with aggressive prostate cancer (ie, predicting metastatic potential), 
represents a major clinical unmet need and is crucially important 
for selecting the appropriate treatment options for patients with 
prostate cancer. A prognostic test that accurately identifies patients 
with aggressive prostate cancers prior to radical prostatectomy will 
help identify the 20% of high-risk patients who will benefit from 
aggressive treatment of their disease and give the 80% of low-risk 
patients, who will not benefit from treatment, peace of mind that 
active surveillance is the correct treatment option for them.

CURRENT APPROACHES
Currently, patients are diagnosed with breast or prostate cancer 
based on traditional (manual) pathological analysis of H&E-stained 
patient tumour samples obtained either through biopsy or surgical 
procedures. The clinician uses the pathological assessment in 
combination with other clinical features (eg, urine or blood-based 
biochemistry results and physical parameters), to determine whether 

the patient has indolent or aggressive disease. However, traditional 
pathology analysis comes with a considerable degree of uncertainty. 
Histopathological assessment is essential in the diagnosis of cancer; 
however, individual evaluation of histopathology slides cannot 
accurately predict patient prognosis. Advances in technology, partic-
ularly computing speed, have rapidly increased the growth of digital 
imaging in pathology.14 15 Deep-learning (DL) AI platforms, such as 
H&E image analysis with AI-based grading capabilities of specimens, 
allows pathologists to better assess and determine diagnostic and 
prognostic indicators and are the key to improving the prediction 
of disease stage and providing personalised medicine. DNN models 
based on digitised slides have proven to show potential in predicting 
the prognosis of patients with cancer, thus advancing precision 
oncology.16 Although digital pathology and AI are still rapidly 
evolving areas, they are vital for facilitating personalised medicine 
for patient treatment. The full utility of the integration of transcrip-
tomic analysis, clinical information and AI-based image analysis has 
yet to be realised by healthcare professionals who can make better 
treatment decisions in cancer (figure 2). Integrative AI assessment 
offers better detection, quantification, classification, prognosis and 
prediction and allows for easier collaboration between pathologists, 
clinicians, scientists and industry, which is vital to move the field 
forward in a meaningful way.

Solutions
The development of prognostic assays has created new oppor-
tunities for improving both breast and prostate cancer treat-
ment decisions; however, these assays are commonly run in a 
centralised lab setting, thereby limiting accessibility. The devel-
opment of decentralised tests, which combines both pathology 
image and molecular data, can be integrated into the standard 
clinical workflow of the hospital setting and could prove advan-
tageous. The use of AI approaches to predict patient prognosis 
will better inform appropriate clinical decision-making. AI can 
be leveraged to identify histological features from digital images 
of a tumour and can associate these features with molecular data 
from the same tumour tissue to predict patient outcome. AI-based 
diagnostic methods can harness computational and mathematical 
vigour previously unrealised by traditional approaches. The inte-
grated analysis of molecular data with AI-mined image data can 
provide greater context for clinicians, which can in turn provide 
greater stratification for appropriate treatment approaches.

Prognostics can play a vital role in patient management and 
decision-making. Currently, approaches to predict status or progres-
sion of cancers are primarily based on immunohistochemical 
screening for specific biomarkers or the use of gene expression signa-
tures (ie, transcriptomic data). Research surrounding the integration 
of omic and clinical data for cancer prognostics is very limited and 
not widely reported. Studies that have taken advantage of singular 
integration approaches, such as combination of genomic and image 
data, have found great utility in predicting patient outcome.17–19 
The advent of digital pathology has allowed for the investigation of 
other forms of prognostic data from digital tissue images, including 
quantitative pathology. Quantitative pathology can involve the 
enumeration of specific cells or morphometric/densitometric anal-
ysis to classify tissue in a metric form; this is seen as a more objec-
tive approach compared with subjective assessment performed 
by pathologists. In computer-aided diagnostic systems, ML tech-
niques are widely employed for cancer detection and diagnosis.20 21 
Recently, AI-based techniques applied for automated classification 
of whole slide images have advanced significantly via DL.22 23 A 
primary advantage of DL is that it can generate high-level feature 
representation directly from the raw images. In addition, with the 

Figure 1  Biomarker stratification can determine risk of recurrence and 
will identify patients who will benefit from chemotherapy treatment 
and who will not benefit. This prognostic test will also result in reduced 
costs of treatment and less strain on healthcare systems.
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support of massive parallel architecture, graphic processing units 
and DL techniques have gained enormous success in many fields in 
recent years including applications in cancer detection and diagnosis 
to predict patient survival time directly from cancer pathological 
images.24 AI approaches offer the opportunity to make better use of 
data-driven clinical diagnosis and can pave the way for a revolution 
in prognostic stratifiers.

Impact
Advances in AI technology are revolutionising patient care, through 
monitoring, diagnosis and even prognosis.25 In medical imaging, the 
evolution of digital pathology has led to the incorporation of AI and 
DL approaches to analyse whole slide images in pathology. Predictive 
and prognostic ancillary testing in cancer have increasingly placed the 
pathologist in a new role as a ‘diagnostic oncologist’ who performs, 
interprets and integrates pathology data on each patient’s tissue such 
that individualised treatment decisions can be made.26 With the 
evolution of whole slide imaging (WSI) and digital pathology, there 
has been an increase in the demand for their use as diagnostic aids 
supporting contemporary clinical care and to also aid in research.27 
The Food and Drug Administration (FDA) has released numerous 
reports on guidance for the use of digital pathology, with the most 
recent being a report on guidance for exploiting digital pathology in 
2020 due to the COVID-19 (SARS-CoV-2) pandemic.28 Addition-
ally, in 2019, the FDA released a discussion paper proposing a fast-
track regulatory framework for AI/ML-based software as a medical 
device.29 The recent pandemic has highlighted the need for digital 
pathology services and, at present, is of utmost importance as by 
using remote digital pathology devices, it may aid in pathology and 
diagnostic services, while reducing physical contact between health-
care personnel. A previous barrier to digital pathology was clinical 
adoption; however, it is envisaged after the pandemic, this obstacle 
will be considerably mitigated by greater widespread acceptance of 
digital pathology platforms.30–32

Clinical workflows in oncology are increasingly relying on predic-
tive and prognostic molecular biomarkers. The acceptance and 
adoption of commercially available prognostic assays were initially 
slow; however, established assays based on diverse biomarkers have 
impacted clinical practice and forged a route to market, which 
should facilitate the introduction of new and improved assays. As of 
early February 2021, there were 45 approved companion diagnostic 
assays33 (in vitro diagnostic and image analysis) approved by the 
FDA for cancer diagnosis. Several publications have highlighted the 
requirement for integrative technologies to provide a better under-
standing of disease progression for proper patient stratification.34 
Current prognostic assays for breast cancer are extremely costly and 
suffer from ambiguity, a key aspect that needs to be addressed. Simi-
larly, for prostate cancer, risk stratification has traditionally relied on 
clinicopathologic features, such as PSA, grade group, clinical stage 

and percentage of positive biopsy cores, to define prognostic risk 
groups.35 36 Only recently have molecular tests been developed that 
may better determine the aggressiveness of prostate cancer based on 
general features of malignancy (namely, proliferation indices).37–39 A 
validated DL algorithm to improve Gleason scoring of patients with 
prostate cancer was recently described,40 whereby the proposed 
solution significantly improved the accuracy of the scoring to 70% 
when compared with an average 61% accuracy achieved by 29 
pathologists. This substantiates the requirement for digital triaging 
of pathology slides.

AI-based image analysis systems enable the extraction of quanti-
tative features such as standard morphometric descriptors of image 
objects and higher level contextual, relational and global image 
features from H&E images. These can then be used independently 
to construct prognostic models.41–44 This has the potential to create 
several highly novel technologies, which will offer healthcare solu-
tions, transform patient treatments, reduce physician workload 
and also reduce the impact of healthcare industries on the environ-
ment too. Despite improvements in diagnostics and treatments, the 
response rates of patients to treatments remains very low, that is 
only 4%–25% for the top 10 US best selling drugs.45 Specifically, in 
cancer the overall response rate to FDA-approved drugs is 41%, but 
only 6% of patients achieve a complete regression of the tumour.46 A 
major reason for highly variable drug responses is that current clin-
ical tools are based on population studies and measure the average 
response instead of the responses of individual patients. However, 
these statistics also give hope that improved patient stratification 
and personalised therapies can shift many patients to complete 
response. Early intervention through a robust and validated assay 
can strengthen this shift.

In recent years, there has been a rapid increase in both the breast 
and prostate cancer diagnostics market and as a result of this, several 
assays have been developed that aim to stratify patients with cancer 
into those at low or high risk of recurrence. Early stage breast cancer, 
particularly those that are oestrogen receptor-positive (OR+), 
represents approximately 75% of newly diagnosed breast cancer 
cases each year.47 For OR+ patients, several tests are available on 
the market that attempt to stratify based on likelihood of future 
recurrence of the disease, such as the leading breast cancer prog-
nostic assays; Oncotype DX (Exact Sciences)48 and MammaPrint 
(Agendia),49 with a novel test in this space, OncoMasTR, recently 
developed also.50 51 Oncotype DX is a 21 gene RT-qPCR assay that 
stratifies patients into three groups: low, intermediate and high risk; 
whereas MammaPrint is a 70 gene microarray assay that stratifies 
patients into two groups: low and high risk. However, both Onco-
type Dx and MammaPrint can only be performed in a centralised 
laboratory setting, thereby limiting their utility and adding to their 
high cost (approx. US$ 4000 per patient). There is a clear critical 
need for a cost-effective, decentralised test in this space.

Figure 2  Integrating imaging, molecular and clinical data with artificial intelligence and deep learning to develop more sophisticated personalised 
patient profiles and accordingly use this information for improved patient stratification to guide appropriate treatment strategies.
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The global prostate cancer diagnostics market size was valued at 
US$ 2.83 billion in 2019 and is anticipated to expand at a growth 
rate of 13.2% over the next 7 years.52 Approximately 4 million 
biopsies are performed worldwide each year with 25% of positive 
biopsies classified as high-risk and result in patients going directly 
for treatment. The US is the leading global market with the largest 
revenue share in 2017 accounting for nearly 40% of the prostate 
cancer diagnostics market53 from the two market-leading prostate 
cancer prognostic signatures tests; Oncotype Dx, Genomic Prostate 
Score (GPS) (Exact Sciences) and Prolaris (Myriad), with combined 
revenue of US$48 million. Oncotype Dx GPS is a 17 gene quantita-
tive reverse transcription PCR (RT-qPCR) assay that provides a GPS 
score (0–100) and compares a patient’s score to the average score 
across the National Comprehensive Cancer Network (NCCN) clin-
ical categories. Prolaris is a 46 gene RT-qPCR assay that provides a 
cell cycle progression score (0–10), which is combined with a clin-
ical CAPRA score to determine a 10-year risk of death. Again, the 
need for a decentralised test is seen in this arena also.

Moreover, there is concern among the medical community that 
there is no solution that completely addresses the market needs—
for example, the market-leading test in the breast cancer prognostic 
arena, namely, Oncotype DX, classifies more than half of patients 
into an ‘intermediate risk’ category and was found to have some 
limitations.54 MammaPrint classifies approximately 50% of patients 
as ‘high-risk’, resulting in significant over treatment. Other tests on 
the market also introduce an intermediate group and/or lack accu-
racy. A comprehensive gap analysis55 surrounding breast cancer 
research noted these issues and pinpointed critical gaps in the anal-
ysis of variant patient groups stratified with biomarkers. The gap 
analysis stressed the requirements for research infrastructure that 
is multidisciplinary and will provide access to new technologies 
pursuing innovative research avenues.

Innovative Infrastructures
Recently, the rapidly increasing number and clinical importance 
of molecular biomarkers in routine clinical practice allow cancer 
treatments to be tailored more specifically according to the genetic 
make-up of a particular tumour; consequently, however, the cost, 
turnaround time and tissue requirements in routine workflows also 
increase.56 Although most new biomarkers in oncology are based 
on molecular diagnostic assays, advances in AI-based DL are facil-
itating the extraction of otherwise hidden information directly 
from routinely available image data. H&E slides are available for 
almost every patient with cancer, making them an easy-to-obtain, 
information-rich data source for assessment by image analysis 
methods using DL. Each patient is unique and, therefore, the ‘one 
size fits all’ approach typically used within healthcare is not always 
effective. In oncology, some of the goals facilitated by personalised 
medicine are individualisation of patient treatments, predicting risk 
of recurrence and predicting survival time.57

Current state-of-the-art
Breast cancer prognostics
There are several breast cancer studies that have aimed to bring 
together images, genomic signatures, molecular subtype char-
acterisation and clinically used recurrence scores in different 
ways.58–60 Such studies have tried to integrate different data 
sources to improve results obtained individually. Natrajan et al 
proposed a histology–genomic integration analysis for diagnosis 
of patients at high risk of relapse using tumour microenviron-
ment heterogeneity, clinical annotation and DNA/RNA data 
matching.61 The K-means algorithm, tumour microenvironment 
heterogeneity by Shanon diversity index, Gaussian mixture 

clustering and a Cox proportional hazards regression model 
were used in this study. They concluded that microenvironment 
heterogeneity, together with key genomic alterations, could be 
used to identify those patients at high risk of relapse and facili-
tate treatment decisions. Other studies correlating image charac-
teristics with clinically available prognostic genomic assays have 
explored prediction of risk of recurrence.62–64 Verma et al used 
morphometric information from H&E samples (mitosis, archi-
tectural patterns, nuclei) and Oncotype DX scores as inputs for 
a Cox proportional hazard analysis in OR-positive patients with 
breast cancer,65 showing outperformance of either assay alone.

Heindl et al evaluated the relevance of spatial heterogeneity of 
immune infiltration for predicting risk of recurrence. Different 
scores such as immune cell abundance—intratumour lymphocytes, 
adjacent-to-tumour lymphocytes and distal-to-tumour lympho-
cytes, spatial scores—immune, cancer and immune-cancer hotspots, 
prognostic scores—OR, Progesterone Receptor (PgR), Human 
Epidermal Growth Factor Receptor 2 (HER2), Ki67 expression, 
clinical treatment score, node status, size, grade, age and treatment, 
OncoType DX recurrence and PAM50 risk of recurrence were used, 
where they were able to provide an association between spatial 
scores and late recurrence in OR+ disease using unsupervised clus-
tering to score immune cell abundance and spatial heterogeneity.62 
Another example using integrated spatial assessment is described by 
Yuan et al who used microenvironmental heterogeneity quantifica-
tion via digital image analysis integrated with RNA gene expression 
and DNA copy number profiling data to identify molecular changes 
and subsequently develop an integrated predictor of survival for 
patients with OR-negative disease.66 For this work, morphological 
image information, image-based lymphocyte proportion, patho-
logical lymphocyte infiltration (LI) score, expression LI signature, 
integrated LI and stromal spatial pattern were used with a support 
vector machine (SVM) and kernel smoother. Similarly, Sun et al 
integrated genomic data and pathological images to effectively 
predict the survival time of patients with breast cancer.67 Genomic 
data (gene expression, copy number alteration, gene methylation 
and protein expression) and pathological images were considered as 
input of an SVM based on multiple kernel learning. Established vali-
dated methods similar to the ones described with high-throughput 
capacity will have great potential for early intervention and treat-
ment support of patients with breast cancer.

Prostate cancer prognostics
The histologic spectrum of prostate cancer ranges from its precursor 
lesion, high-grade prostatic intraepithelial neoplasia, to dediffer-
entiated cancer and displays a wide spectrum of morphological 
patterns.68–71 The Gleason score is currently the strongest predictor 
of prostate cancer recurrence with Gleason 4 and Gleason 5 patterns 
strongly associated with poorer outcome.72 73 More recently, the 
presence of cribiforme architecture in pathology H&E sections is 
considered to provide additional prognostic information as Gleason 
grading suffers from substantial interobserver variation, limiting 
its usefulness.74 75 Digital pathology coupled with automated DL 
systems is being explored to see whether prostate cancer diagnos-
tics can benefit from a robust and reproducible Gleason grading 
system.76 77

At the molecular level, a number of molecular subtypes have been 
identified.78 Most assays for prostate cancer are focused on these 
prediagnostic markers to consider their ability to identify clinically 
significant prostate cancer (PCa), while avoiding unnecessary biop-
sies and also to decide whom to biopsy (PHI, 4Kscore, SelectMDx, 
MiPS) and when to rebiopsy (PCA3 and ConfirmMDx). Several 
image-based prostate analysis methods have been described. Bulten 
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et al and Ström et al independently developed an automated DL 
system for Gleason grading of prostate cancer biopsies at Radboud 
University Medical Center and Karolinska Institute, respectively, 
designed to (1) identify individual glands, (2) assign Gleason growth 
patterns and (3) determine biopsy-level grade.76 77 They found 
that their DL systems performed as well as pathologists and could 
potentially provide assistance through screening biopsies, providing 
second opinions on grade groups and presenting qualitative 
measurements of tumour volume percentages.

For prognostics, Oncotype DX GPS and ProMark might help 
decide who to treat, whereas Prolaris tries to identify patients who 
might be at risk for distant metastases and, therefore, need further 
treatment. The real challenge is to find the best combination, which 
includes biomarkers and clinical data, without increasing the cost 
and the risk of overdiagnosis.79 The combined clinical and molec-
ular heterogeneity of prostate cancer necessitates the use of prog-
nostic, predictive and diagnostic biomarkers to assist the clinician 
with treatment selection. The pathologist plays a critical role in 
guiding molecular biomarker testing in prostate cancer and requires 
a thorough knowledge of the current testing options.

Multiplexed Immunohistochemistry (IHC) enables identifica-
tion and quantification of multiple biomarkers and reveals spatial 
context within a digital workflow, resulting in rapid generation 
of data.80 The spatial architecture of tissue samples can strongly 
influence disease pathology, progression and treatment response. 
To our knowledge, there are currently no product solutions 
commercially available fusing imaging, molecular and clinical 
data, which would provide greater information to clinicians 
than any currently available methods. With the advancement of 
digital AI-based solutions, the current gap in available offerings 
in the diagnostics and prognostics space will undoubtedly be 
populated quite rapidly over the next few years.

Conclusion
AI and ML approaches provide significant new opportunities in 
precision oncology, particularly in relation to lower costs, ergo-
nomic healthcare settings for pathologists and improved patient 
stratification.

Pathologists spend an inordinate amount of time at a microscope 
reviewing boxes of glass slides, this is neither efficient (costing time 
and money) nor ergonomic. Physicians are often ‘over-treating 
as a precautionary measure without full prognostic awareness’. 
Removing low value processes (normal tissue) from an overloaded 
pathologist can increase their capacity to review high priority cases 
and allows for faster review. Finally, personalised medicine has been 
greatly improved due to digital pathology and AI, which provide 
greater certainty regarding prognosis.
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