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resulting in background noise and PCR artefacts. NGS panels 
designed for enrichment are more successful when using novel 
technologies such as single-vial amplification with SLIMamp.6

The rigorous process of validation of our 48 gene panel was 
approved by NYSDOH for clinical use. With over 96% of target 
regions, including sequences with suboptimal G:C content 
achieving a coverage of over 1000X, the uniformity of coverage 
facilitates a low LOD of 2.5%–3% VAF for the targeted hotspot 
variants in all sample types. NGS testing of somatic variants at 
splice, coding and promoter regions of genes may present with 
intrinsically challenging G:C bearing sequences that lead to 
suboptimal data.12 In addition, high degree of sequence simi-
larity, existence of pseudogenes and other duplicated regions in 
the genome complicate the generation of quality sequences.13 14 
However, with almost 90% of the targeted regions achieving 
2000X coverage, the CSTP assay is able to sequence the to meet 
the quality metrics eve in complex genomic regions. Notably, the 

low coverage regions (in PTEN and STK11), do not harbour clin-
ically relevant variants reported the COSMIC database.15 Such 
results verify that improved technology and established metrics 
can capture low-frequency variants present in clonal and heter-
ogenous tumours without sacrificing the quality of results.

Establishing sound quality metrics for NGS assays is a key 
requirement for optimal performance and controls that harbour 
low VAF variants are crucial for quality assurance. Sequencing 
of histologically normal tissue is beneficial to identify potential 
population variants, thereby streamlining the bioinformatics 
output to verify and negate out any possible false positive call 
in this targeted panel. Notably, the assay did not have any ampl-
icon drop-outs in targeted regions, as evidenced by uniformity 
and mapping on-target rates; over 99% of the amplicons having 
greater than 500x coverage. In addition, the high correlation of 
variant calls using two different bioinformatics pipelines further 
highlight the robustness of data.

Assay failures due to inadequate DNA quantity, suboptimal 
quality, tumour heterogeneity and paucity of neoplastic cells are 
universal limitations to optimal patient management.16–20 While 
the FFPE samples used for routine clinical testing are fixed as 
per our standard protocol of under 30 hours, the validated assay 
is able to detect clinically relevant variants in samples that were 
fixed in formalin for up to 7 days.21 Since its implementation 
for patient care, 253/2032 (12.4%) of the samples scored by a 
molecular pathologist had neoplastic cellularity of 10% or less 
(between 8% and 10%). Interestingly, the failure rate due to 
low tumour percentage was 2.3% along with 1.4% attributed 
to the quality of DNA. The data render the panel an attrac-
tive alternate to several current NGS hotspot assays. From the 
workflow point of view, the single-vial amplification favours the 
elimination of potential errors and reduction to 3–4 days in the 
turn-around-time.

With greater than 95% success rate, and an overall analytical 
failure rate of less than 3.75%, the CSTP assay has proven to 

Figure 6  Graphical representation of the correlation of the variant 
allelic frequencies obtained between the NextGENe and PiVAT pipelines 
for 137 variants tested for accuracy. The data show excellent correlation 
between the two pipelines. VAF, variant allelic frequency.

Figure 7  Evaluating the depth of coverage for the PTEN gene. (A). Graphical representation of the depth of coverage for the chromosomal 
coordinates covered in this panel. (B) A representative figure showing regions with low coverage having low mappability (�UCSC, hg19). LDT, 
laboratory developed test.
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be a robust and reliable targeted NGS panel for identification 
of therapeutic, diagnostic and prognostic biomarkers in several 
types of cancers. Finally, in conjunction with the RNA fusion 
panel, a comprehensive variant profile that interrogates almost 
all of the clinically relevant mutations in lung adenocarcinoma 
is obtained, suggesting the enhanced potential of using multiple 
small targeted NGS panels for molecular profiling.22

CONCLUSIONS
Targeted NGS panels for identification of variants in solid 
tumours has been adopted globally.7 22 While the overall perfor-
mance of these assays is good, QC measures are crucial for iden-
tifying potential problems.13 23–25 Here, we document the clinical 
utility of a new and improved NGS technology with instituted 
quality metrics, that generates repeatable, robust and reproduc-
ible results with minimal DNA input and neoplastic cellularity 
for identification of actionable variants.
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