Effect of contraceptive steroids on monoamine oxidase activity

JENNIFER SOUTHGATE, G. G. S. COLLINS, J. PRYSE-DAVIES, AND M. SANDLER
From the Bernhard Baron Memorial Research Laboratories and Institute of Obstetrics and Gynaecology, Queen Charlotte’s Maternity Hospital, London

SYNOPSIS Cyclical variations in monoamine oxidase activity during the human menstrual cycle, specific to the endometrium and modified in women undergoing contraceptive steroid treatment, may reflect changes in hormonal environment. Treatment of rats with individual constituents of the contraceptive pill causes analogous changes: oestrogens inhibit and progestogens potentiate uterine monoamine oxidase activity.

The enzyme monoamine oxidase (EC 1.4.3.4), which is probably involved in the inactivation in viva of catecholamines, 5-hydroxytryptamine, tyramine, and other biologically active monoamines, has been studied with increasing intensity during the last five years. It is widely distributed throughout the body, the highest concentrations being found in the parotid gland (Strömblad, 1959) and liver (Bhagvat, Blaschko, and Richter, 1939). Relatively few observations are available on the localization and function of this enzyme in the female genital tract although there has been speculation on the possible role of placental monoamine oxidase in the pathogenesis of toxaemia of pregnancy (for review, see Southgate and Sandler, 1968). The rat uterine enzyme is inhibited or potentiated by oestrogen or progesterone respectively (Collins, Pryse-Davies, Sandler, and Southgate, 1970a). It seems likely that the human endometrial enzyme is similarly affected by these constituents of the ‘pill’; the evidence by which we have been led to such a conclusion is set out below.

Changes in Endometrial Monoamine Oxidase Activity during the Menstrual Cycle

It appears that marked variations in the histochemical staining patterns of human endometrial monoamine oxidase occur during the menstrual cycle (Cohen, Bitensky, Chayen, Cunningham, and Russell, 1964; Cohen, Bitensky, and Chayen, 1965). Enzyme activity is low and confined to a particulate fraction during the proliferative phase, whereas later the staining is not only more intense but diffuse; shortly before menstruation, the particles appear to rupture releasing the enzyme into the cell cytoplasm. Cohen and his coworkers suggested that the non-particulate enzyme might be unable to oxidise catecholamines and that the resulting accumulation of vasoactive amines caused spasm of the spiral arteries and the start of menstruation. As histochemical assessment of enzyme activity can at best be semiquantitative, an attempt was made to correlate histochemical and direct biochemical measurements of the activity of monoamine oxidase in tissue samples from human endometrium (Southgate, Grant, Pollard, Pryse-Davies, and Sandler, 1968).

In order to obtain relatively normal endometrial samples, biopsy specimens were examined from 17 women aged 24-40 years attending the central clinic of the Council for the Investigation of Fertility Control and from 13 others aged between 21 and 47 years attending Chelsea Hospital for Women for a variety of minor disorders. The menstrual cycles and endometrial morphology of all subjects was normal and none was on hormonal treatment at the time of curettage.

The method of Wurtman and Axelrod (1963b) was used for biochemical estimation of mono-
amine oxidase activity. Endometrial homogenates were incubated with 14C-tryptamine and the radioactive metabolites extracted into acidified toluene. An aliquot of the extract was counted in a liquid scintillation spectrometer and enzyme activity expressed as counts per minute per milligram dry tissue weight. For histochemical estimations, tissue sections were incubated with tryptamine and nitro-blue tetrazolium (Glenner, Burtner, and Brown, 1957) and the site of monoamine oxidase activity was localized by the intensity of formazan production. There was good correlation between the two procedures. In the 30 human biopsies investigated, monoamine oxidase activity was low in the early non-secretory phase of the cycle but at about the 19th to 21st day, which corresponds with the beginning of the late secretory phase, there was a sudden increase in enzyme activity (Fig. 1). Because of irregularities in human menstrual pattern, endometrial morphology gave a closer correlation with monoamine oxidase activity than did the actual day of the cycle.

The intensity of staining of the endometrial glandular epithelium was used to assess monoamine oxidase activity in human biopsies (Southgate et al., 1968). Histochemical staining of sections from early and late secretory endometrium is shown in Figs. 2 and 3 respectively. The scattered granular monoamine oxidase activity in the former is accompanied or replaced by a more diffuse blue coloration later in the cycle. These findings do not support the suggestion of Cohen et al. (1964) that the heavy diffuse staining represents an inactive form of the enzyme; indeed, the opposite would seem to be the case.

Effect of Progestogens and Oestrogens on Human Endometrial Activity of Monoamine Oxidase

Peak plasma progesterone levels occur at about the 20th day of the human menstrual cycle (Werth, 1955) and so it was thought that monoamine oxidase activity might be progesterone dependent. In 1968, Grant and Pryse-Davies examined endometrial specimens from patients taking oral contraceptives; with the strong progestational type of 'pill', increased monoamine oxidase activity was detectable at the 12th day of the cycle whereas with weak oestrogenic or sequential regimes, endometrial enzyme activity was low throughout the cycle. These results provide added evidence that in the endometrium, monoamine oxidase activity is in some way related to the hormonal environment.

A unique case of a 35-year-old woman who at 23 weeks' gestation suffered from vaginal bleeding, for which she was given high dosage of hydroxyprogesterone and stilboestrol, provided additional evidence for the effect of hormones on monoamine oxidase activity. Despite treatment, she subsequently aborted at 26 weeks. In the foetus, weak but definite monoamine oxidase activity was detected in unusually vacuolated endometrial cells. In all other abortions and stillbirths which have been examined, no endometrial monoamine oxidase activity was detectable before about 38 weeks of gestation. The foetal ovary was immature, showing primordial but no Graafian follicles and it would therefore appear unlikely that enzyme activity was induced by the production of endogenous hormone.

Platelet Monoamine Oxidase Activity during the Menstrual Cycle

The question arose as to whether the cyclic changes in monoamine oxidase activity were...
Effect of contraceptive steroids on monoamine oxidase activity

peculiar to the endometrium. Blood platelet monoamine oxidase activity, a convenient index *in vivo* of the status of the enzyme (Paasonen, Solatunturi, and Kivalo, 1964; Latt, Rippey, and Stacey, 1968; Robinson, Lovenberg, Keiser, and Sjoerdsma, 1968), was therefore monitored in four women throughout the menstrual cycle.

Using plastic syringes, 4 ml of venous blood was withdrawn weekly at the same time of day and was transferred to a plastic tube containing 5 mg of ethylene-diamine tetra-acetic acid di-sodium salt (EDTA) and approximately 5 ml of normal saline containing 2% (w/v) EDTA was added. After gently mixing and sedimenting red blood cells by centrifugation for 6 min at 500 g at room temperature, the supernatant was removed with a siliconized Pasteur pipette and spun at 2,000 g for 15 min at 4°C. The platelet button was isolated and resuspended in 1-0 ml of water. A 0-1 ml aliquot of the suspension was assayed for monoamine oxidase activity using the spectrophotofluorimetric method described by Kraml (1965). Protein nitrogen was determined by the method of Lowry, Rosebrough, Farr, and Randall (1951) using crystalline bovine serum albumin as a standard. Towards the end of the cycle, monoamine oxidase activity appeared to fall (Fig. 4) but there was no rapid increase around the 19th to 21st days as had been found with the endometrial enzyme.

Klaiber, Kobayashi, and Broverman (1967) have reported that plasma tyramine oxidase activity (Kobayashi, 1966) fluctuates during the menstrual cycle reaching a peak on about the 24th day. Although this enzyme possesses certain similarities to the platelet enzyme, it is not established that it is a true monoamine oxidase (Levine, 1966).

Rat Tissue Monoamine Oxidase Activity after Oestradiol and Progesterone Pretreatment

Fluctuations in activity of monoamine oxidase during the oestrus cycle in various tissues of the rat have been reported (Kobayashi, Kobayashi, Kato, and Minaguchi, 1964; Kato and Minaguchi, 1964; Salseduc, Jofre, and Izquierdo, 1966;...
culminating events really on Sedvall, with DL-DOPA increase is environment. Although these only provide changes, with oestradiol as brain, and for monoamine oxidase activity served changes, in several most a using histoochemical technique. this finding is in line with similar data of Wurtman and Axelrod (1963a) and also correlates with the report of Cavanaugh and Zeller (1966) that in mouse liver the activity of monoamine oxidase is lower during oestrus than in pro-oestrus. It is probably relevant in this connexion that cardiac monoamine oxidase activity is lower in the female than the male rat (Skillep, Thienes, and Strain, 1962; Wurtman and Axelrod, 1963a). Oestrogen dosage gave rise to an unequivocal decrease in rat uterine monoamine oxidase and although this finding might not have been predicted from the data of earlier workers (Thompson and Tickner, 1949; Coveney, 1964; Pinto and Rabow, 1966), it correlates well with our findings that its activity is lowest during the non-secretory phase of maximal oestrogen secretion during the human menstrual cycle (Southgate et al, 1968). It has also recently been reported that rat liver catechol-O-methyltransferase, another enzyme which is involved in the inactivation of catecholamines (Axelrod, 1957) is competitively inhibited by 2-hydroxylated oestrogens but is unaffected by oestradiol (Knuppen, Lubrich, Haupt, Ammerlahn, and Breuer, 1969); the studies in vitro of Collins and Southgate (1969), on the other hand, showed that rat uterine monoamine oxidase is competitively inhibited by 17-β-oestradiol. Interpretation of these findings is still obscure. The situation is likely to be even more complex than appears at first sight, for oestradiol exerts a regulatory effect on progesterone metabolism in the female rat liver (Wenzel, Langold, and Hallac, 1969).

It is not known whether amine concentrations in the human uterus vary during the menstrual cycle although it has been established that the capacity of rat uterine tissue to bind adrenaline is more than four times greater during oestrus than di-oestrus (Wurtman et al, 1963). The potentiation of monoamine oxidase activity in the

Figure 4. Platelet monoamine oxidase activity during the menstrual cycle in four subjects. Enzyme activity is expressed as µg 4-hydroxyquinoline formed per 30 minutes' incubation per milligram protein.
Effect of contraceptive steroids on monoamine oxidase activity

Fig. 5. Effect of oestradiol, progesterone, and DL-DOPA on rat tissue monoamine oxidase. Enzyme activity expressed as nanograms kynuramine deaminated per minute of incubation per milligram protein ± S.E. C = control, OE = oestrogen, P = progesterone, D = DL-DOPA. □ P < 0·02 □ P < 0·01 * P < 0·001. NS = not significant.

Fig. 6. Effect of oestradiol, progesterone, and DL-DOPA on tissue fractions of rat uterine monoamine oxidase. Enzyme activity expressed as nanograms kynuramine deaminated per minute of incubation per milligram protein ± SE. C = control, OE = oestrogen, P = progesterone, D = DL-DOPA. □ P < 0·05 □ P < 0·005 * P < 0·001

rat uterus by pretreatment with DL-DOPA suggests that variation in monoamine oxidase substrate concentrations may be involved in the control of enzyme activity; on the other hand, alterations in amine levels may be secondary to changes in monoamine oxidase. Whether the mechanism of action of the three drugs investigated is in any way interconnected or whether the pharmacological effects evoked possess any physiological counterpart cannot be decided on present evidence.

From the evidence presented it appears that rat uterine monoamine oxidase differs from that of the rat tissues in its sensitivity to oestradiol and progesterone. Evidence has accumulated that monoamine oxidase exists in multiple forms (Youdim and Sandler, 1967; Collins, Youdim, and Sandler, 1968; Youdim, Collins, and Sandler, 1969; Gomes, Igaue, Klopfer, and Yasunobu, 1969; Collins and Youdim, 1969). For example, polyacrylamide gel electrophoresis of solubilized human brain monoamine oxidase separates four bands of activity (Collins, Youdim, Sandler, and Williams, 1970b) whereas human platelet monoamine oxidase consists of a single isoenzyme(Collins, 1969). Rat uterine monoamine oxidase has three bands of activity, one of which appears to be hormone sensitive (Collins and Southgate, 1969). This may provide an explanation for the changes in rat uterine monoamine oxidase activity after hormone pretreatment. If a similar situation is revealed in the human uterus, and the evidence summarized in this paper seems to make this likely, it is possible that the synthesis of a specific drug tailored to inhibit this band may eventually provide a quite novel approach to oral contraception. We are at present exploring this possibility.

References

