Ischaemia of bone

MARY CATTO
From the Department of Orthopaedic Pathology, University of Glasgow at the Western Infirmary, Glasgow

In recent years bone necrosis has become of increasing significance and has stimulated much interest amongst clinicians, radiologists and pathologists. It is now an important cause of disability because it commonly complicates intracapsular femoral neck fracture which is frequent in aging populations (Barnes et al, 1976; Graham and Wood, 1976). It is a hazard not only to tunnellers working in compressed air (MRC Decompression Sickness Panel Report, 1971) but also to divers whose numbers and activities are ever expanding with the exploitation of North Sea oil (Lancet, 1974; Davidson, 1976). It gives rise to articular symptoms in some patients receiving therapeutic steroids (Fisher and Bickel, 1971; Park, 1976) and particularly in those on the high dosages and prolonged administration associated with immunosuppression following organ transplant. In addition to necrosis associated with these and other well accepted causes, so-called idiopathic or spontaneous necrosis may occur, especially in the femoral head (table I). The predisposing causes of such 'idiopathic' necrosis are currently the subject of intensive investigation (Zinn, 1971a and b) (table II).

Unfortunately the clinical diagnosis of bone necrosis is not easy. There are usually no signs to indicate an ischaemic episode until many months have elapsed and necrotic bone shows no radiological change unless the part is immobilized, then the dead bone may appear denser than the adjacent viable, porotic bone. A true increase in radiological density may result from laying down of new bone during repair, from compaction of trabeculae or from calcification within living or dead tissue (Johnson, 1964). Diagnosis may thus be difficult and caution is required in inferring underlying tissue changes even from well recognized radiological patterns.

The widespread use of prosthetic replacement of bone and joints has provided the pathologist with the opportunity of studying more rewarding material than the small biopsy or the end-stage necropsy specimen, and there is now fairly general agreement on the pattern of morphological changes following necrosis (Catto, 1976): the sequence of events which brought these changes about is, however, open to more than one interpretation. In many conditions the pathogenesis of necrosis is controversial and is not always accepted as being primarily vascular (table I). Many questions remain unanswered, including one of major clinical importance; why is revascularization so often arrested and incomplete?

The purpose of this paper is to indicate how bone necrosis may be recognized, to describe in a general way the main morphological features, and to point out areas of difficulty and controversy. Many topics, and particularly the osteochondritides of childhood, are omitted since it is rare for the pathologist to obtain material from them.

Recognition of dead bone

Experimental evidence suggests that ischaemia of more than a few hours (Woodhouse, 1962; Henard and Calandrucio, 1970), perhaps up to 48 hours (Kenzora et al, 1969), results in death of bone. It is generally accepted that if bone is fresh, rapidly fixed and the sections of good quality, bone death is recognized histologically by loss of osteocytes from lacunae. However, artefactual loss by physical displacement of osteocytes from lacunae during sectioning or their failure to stain because of slow fixation or overdecalcification must be taken into account. Conversely, dead sequestra or stored allo grafts occasionally retain pyknotic nuclei. Unfortunately, loss of osteocytes in conventionally prepared histological sections may not become apparent for a few days nor be complete for a few weeks after the onset of ischaemia (fig 2) (Bonfiglio, 1964; Catto, 1965a). While special techniques such as the Feulgen reaction have been used in experimental animals to demonstrate early changes in osteocyte nuclei following ischaemia, their assessment requires control material for comparison (Rösiging and James, 1969). Ischaemic changes in haemopoietic marrow, such as the formation of large fat-filled spaces and loss of nuclear staining, may be recognizable within a few days (fig I), but death of fatty marrow is more difficult to recognize because of its relatively low cellularity. The practical implication of these observations is that the pathologist can seldom answer the orthopaedic surgeon who, following a recent femoral neck fracture,
<table>
<thead>
<tr>
<th>Favoured Sites</th>
<th>Clinical</th>
<th>Postulated Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Trauma</strong></td>
<td>Intracapsular fracture of femoral neck in</td>
<td>Local pattern of blood supply</td>
</tr>
<tr>
<td></td>
<td>old porotic women → some degree of necrosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>in more than 66%. Of the 75% which unite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about 25% later develop collapse of femoral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>head</td>
<td></td>
</tr>
<tr>
<td><strong>Radiation</strong></td>
<td>Femoral head, shoulder girdle, ribs</td>
<td>Direct effect on osteocytes.</td>
</tr>
<tr>
<td></td>
<td>Follows both external and internal</td>
<td>Secondary effect from vascular narrowing.</td>
</tr>
<tr>
<td></td>
<td>radiation. Actual necrosis only in severe</td>
<td>Alteration in matrix strength → trabecular fracture</td>
</tr>
<tr>
<td></td>
<td>osteodysplasia. May develop fracture</td>
<td>and secondary necrosis</td>
</tr>
<tr>
<td></td>
<td>especially of femoral neck? cause and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unassociated collapse of femoral head</td>
<td></td>
</tr>
<tr>
<td><strong>Dysbarism</strong></td>
<td>Shafts of femur, humerus, tibia,</td>
<td>Profuse expanding nitrogen bubbles.</td>
</tr>
<tr>
<td></td>
<td>Humeral head, femoral head</td>
<td>Platelet aggregation</td>
</tr>
<tr>
<td></td>
<td>Tunnellers: probably 20% develop bone</td>
<td>Fat emboli etc.</td>
</tr>
<tr>
<td></td>
<td>necrosis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Haemoglobinopathies</strong></td>
<td>Acute 'dactyliitis'. Shafts of</td>
<td>Red cell sickling + sluggish circulation → vascular</td>
</tr>
<tr>
<td></td>
<td>humerus, femur, tibia, any long bone.</td>
<td>occlusion → endothelial damage → infarction</td>
</tr>
<tr>
<td></td>
<td>Femoral head, humeral head. ?End plates of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vertebral bodies (not proven by histology)</td>
<td></td>
</tr>
<tr>
<td><strong>Pancreatic disease and occasionally</strong></td>
<td>Long bone shafts, rarely femoral or</td>
<td>Lipase release to peritoneal fluid → lymphatics →</td>
</tr>
<tr>
<td><strong>policythaemia</strong></td>
<td>humeral heads</td>
<td>bloodstream → necrosis of fatty marrow and sometimes of bone.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Systemic fat emboli</td>
</tr>
<tr>
<td><strong>Gaucher's disease</strong></td>
<td>Femoral head, humeral head. Shafts of long</td>
<td>Packing of marrow by Gaucher cells → compression of</td>
</tr>
<tr>
<td></td>
<td>bones</td>
<td>sinusoids. Perhaps blocking of lumina of sinusoids with</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gaucher cells as in liver. Necrosis of cells followed by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dense fibrosis of marrow</td>
</tr>
<tr>
<td><strong>Steroid therapy</strong></td>
<td>Femoral head, humeral head, femoral condyle,</td>
<td>Systemic fat emboli</td>
</tr>
<tr>
<td></td>
<td>upper tibia, talus, scaphoid, capitulum of</td>
<td>Trabecular microfracture with secondary necrosis</td>
</tr>
<tr>
<td></td>
<td>humerus, capitate, shaft, of femur</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>'Idiopathic' or 'spontaneous'</strong></td>
<td>Femoral head</td>
<td>Numerous associations (see table II).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In some, eg, alcoholics, systemic fat emboli are postulated;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in others trabecular microfractures</td>
</tr>
<tr>
<td></td>
<td>Medial femoral condyle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other sites are rare</td>
<td></td>
</tr>
</tbody>
</table>

### Table I  Summary of ischaemia of bone

- Alcoholism
- Gout and hyperuricaemia
- Diabetes and hyperglycaemia
- Minor congenital anomalies of the hip
- Disorders of fat metabolism
- Obesity
- Systemic lupus erythematosus
- (Steroids have now been separated from this group)

### Table II  Some of the factors reported to be associated with idiopathic necrosis

wishes to know whether a core biopsy from the femoral head is live or dead. Not only is there a problem in sampling, since ischaemia may affect only part of the femoral head, but the tissue biopsied soon after fracture may misleadingly fail to show the changes of necrosis.

If the bone marrow is revascularized by the ingrowth of blood vessels from adjacent living tissue there is then both osteoclastic resorption of dead
Fig 1* Five days after femoral neck fracture haemopoietic marrow from the femoral head shows loss of nuclear staining and formation of fat-filled spaces. Osteocytes are still recognizable in the bone trabecula (x 100).

Fig 2* Seventeen weeks after fracture all of the osteocyte lacunae of the bone trabeculae are empty and the marrow is 'ghosted' (x 100).

Fig 3* The marrow is revascularized. Osteoclasts are resorbing dead bone and some new bone has been laid down by osteoblasts (arrowed) (x 125).

*Reproduced by kind permission of the Editor and publishers of the Journal of Bone and Joint Surgery.
Ischaemia of bone

the patient, the amount of resorption is relatively small and the dead trabeculae become encased in living bone, so that 'creeping apposition' is a better description (Bohr and Larsen, 1965; Kenzora et al, 1969). The dead central cores may persist for months or even years and remain as a histological marker of previous bone necrosis (Catto, 1965b) (fig 4).

Osteocyte loss in aging and in occlusive vascular disease

Focal osteocyte loss is a well recognized feature of aging bone. The parts of the bone furthest away from blood vessels, such as the interstitial lamellae between the cortical osteones (Haversian systems), tend to be affected first and even in childhood occasional empty lacunae may be seen here (Jaffe and Pomeranz, 1934; Frost, 1960a). With advancing age, and presumably a deteriorating blood supply, the number of empty lacunae increases. The outer rings of cortical osteones and the subchondral bone plate are chiefly involved, but less marked focal loss may be seen in medullary trabeculae (Frost, 1960a). Sometimes the usual slit-like lacunae are enlarged and filled with mineral (Jowsey, 1960; Frost, 1960b). Usually the patchy distribution of osteocyte loss and the normal-appearing marrow help to distinguish microscopically this slow 'physiological' loss (fig 5) from more acute and severe ischaemic episodes with marrow damage and complete loss of osteocytes (fig 2). However, some caution is needed in interpreting empty lacunae in small central bony cores in the aged, the group especially likely to suffer intra-capsular fractures of the femoral neck.

Similar but more severe osteocyte loss may be seen in the tibia of legs amputated for peripheral gangrene, much of the cortex being necrotic (Jaffe and Pomeranz, 1934; Sherman and Selakovich, 1957). These extensive pathological changes are usually symptomless and radiologically unsuspected. Localized medullary infarcts are occasionally reported in association with peripheral gangrene. However, the importance of occlusive vascular disease in the production of medullary infarcts in elderly patients without peripheral gangrene is not known; certainly similar infarcts are occasionally found incidentally in younger patients (Kahlstrom et al, 1939; Bullough et al, 1965).

Patterns of bone necrosis

Bone necrosis is conveniently divided for practical purposes into two groups, symptomless medullary lesions and juxta-articular lesions, which are potentially disabling since collapse of the joint surface may

---

Fig 4 Eighteen months after intracapsular fracture of the femoral neck the femoral head was removed because of collapse of the weight-bearing area. Dead trabeculae from the depths of the head (arrowed) are seen covered by living bone. The marrow blood vessels are slightly congested (× 65).

Fig 5† There are scattered empty lacunae in this subchondral bone trabecula from a 75-year-old woman. The fatty marrow is not necrotic (× 140).

†Reproduced by kind permission of the Editor and publishers of Excerpta Medica, Amsterdam.

bone and the laying down of new living bone on the surface of dead trabeculae (fig 3), a process traditionally described as 'creeping substitution'. Often nowadays, perhaps because of early mobilization of
occur and is followed by secondary degenerative changes in the joint.

**MEDULLARY LESIONS**

Medullary lesions are found, especially in association with dysbarism and the haemoglobinopathies (Middlemiss, 1976), and occasionally in steroid-treated patients or 'spontaneously'. The shaft of the lower femur, the tibia and the humerus are most often affected, sometimes bilaterally. The extent of necrosis varies from small foci to large areas involving much of the width of the medullary cavity and sometimes also areas in the deeper cortex. It is important to realize that extensive bone necrosis may be present without any detectable radiological abnormality even in radiographs of thin slices of the bone. These unrecognized infarcts, which have been seen especially in steroid-treated patients (Bullough et al. 1965; Catto, 1976) appear as sharply demarcated zones of opaque, yellowish marrow with an irregular margin outlined by congestion and haemorrhage (fig 6).

In more mature lesions fairly well defined zones may also be distinguishable (fig 7). In the central area dead trabeculae are surrounded by necrotic marrow which may retain its cellular outlines or become liquefied, cystic or spottily calcified. This zone of dead tissue is often surrounded by a greyish serpiginous collagenous capsule in which dead trabeculae may be unaltered or show apposition of new viable bone on the surface. Outwith this, in the living marrow, acellular trabeculae, often continuous with those in the dead central zone, may be covered by viable bone. Perhaps the most likely explanation of these morphological appearances is that there has been partial revascularization of the dead bone with incomplete, arrested repair (Phemister, 1940; Bullough et al., 1965).

**JUXTAARTICULAR LESIONS**

Juxtaarticular lesions are found most often in the femoral or humeral heads and less commonly in the femoral condyles, talus, scaphoid, capitate or capitulum of the humerus (table I). In the femoral head the site most frequently affected is the load-bearing supero-lateral part and in the humeral head the central dome. As in the medullary lesions, well defined zones are usually apparent; immediately beneath the articular cartilage there is a variable depth of yellowish, opaque marrow and dead bone, separated by a band of vascular granulation or dense collagen from adjacent viable marrow and from bone trabeculae which may be widened and sclerotic due to the presence of new bone on the surface of dead (fig 8). The trabeculae tend to be thickest where they abut on dense fibrous tissue and gradually give place to trabeculae of normal thickness containing their full complement of osteocytes. In most conditions the widely accepted interpretation of these morphological findings is that bone necrosis has been followed by revascularization and repair which has stopped short of completion, the dense collagen representing the furthest extent of the process. At this stage, there are no clinical symptoms and either no radiological abnormality is apparent or if, after some months, the trabeculae become sufficiently broadened, linear or more diffuse radiological sclerosis may outline the necrotic subchondral tissue.

After necrosis has been present for months, or sometimes for years, trabecular fracture may occur within the dead bone resulting in partial separation
The patient was a 50-year-old male who died a few weeks after a renal transplant. He suffered from the nephrotic syndrome for 10 years and was at first treated with steroids. A year before his death he developed uraemia and hypertension necessitating dialysis. A skeletal survey at this time revealed thickening and irregularity of the cortex of both femoral shafts along with patchy medullary calcification (a). There was also increased density in both femoral heads without structural failure. On section (b) irregular areas of opaque yellowish marrow were surrounded by white fibrous tissue. This fibrous tissue was partially calcified as can be seen in the slab radiograph (c). There were also small foci of calcification within the dead tissue. The dead zone involved the deep part of cortex as well as the medulla (d). The dead fatty marrow on the left has, in places, retained its cellular outlines. At the margin collagen is seen and the dead trabecula on the right shows some appositional live bone on its surface (×50).

Fig 7

of an articular sequestrum. Frequently fracture occurs just beneath the subchondral plate, giving rise to a narrow crescentic line of radiolucency running parallel to the joint surface (Norman and Bullough, 1963) (fig 9). The contour of the bone end may at first appear unchanged but pressure on the articular surface shows that it is easily indented and unduly resilient. Cracks and fissures are seen at the margin of the sequestrum (fig 10), synovial fluid may penetrate through these fissures and bone detritus, resulting from grating together of the dead surfaces, may escape into the joint spaces. Sometimes fibrocartilage, which can form without a blood supply, covers the undersurface of the sequestrum. Trabecular fracture may occur deeper below the articular surface, occasionally at the junction of the zone of fibrosis, thus separating a thicker sequestrum. Various explanations of the trabecular fractures have
The patient was a 33-year-old tunnel worker who had been intermittently employed in compressed air for 14 years. He died within 12 hours of an attack of acute decompression sickness. The humeral head appeared normal externally but on section (a) showed a shallow juxtaarticular zone of necrosis bordered by collagen and by thick trabeculae which consisted of dead trabeculae ensheathed by living bone (× 75). On the slab radiograph (b) these gave rise to a sclerotic line which outlined the extent of the remaining dead bone.

*Reproduced by kind permission of the Editor and publishers of the Journal of Bone and Joint Surgery.
This 72-year-old woman suffered a displaced intracapsular fracture. A nailplate was inserted and after a year bony union appeared complete but five months later the patient began to complain of pain and slight flattening with collapse of the femoral head was observed. Twenty-one months after fracture a prosthesis was inserted. Fracture had occurred through the remaining dead trabeculae immediately beneath the subchondral plate in the load-bearing segment. The resulting crescentic line of translucency is well seen in the slab radiograph. Fibrosis between the dead and living tissue was not dense and here there was only moderate thickening of dead trabeculae by living bone producing a slightly sclerotic border outside the dead tissue. The nail track and the healed fracture site are also marked by broad trabeculae.

This 31-year-old man complained of pain in the right hip for three months. He had not been exposed to compressed air. He weighed 24 stones and attributed his obesity to heavy drinking. Excision of the femoral head (a) revealed a relatively normal joint contour but the articular surface was unusually resilient and could be sprung like a ping-pong ball. Cracks were visible at the margin of the partially detached sequestrum (arrows). Section showed a fracture through dead bone close to the joint surface (b). The dead bone trabeculae beneath this subchondral fracture formed a continuous meshwork with broad trabeculae consisting of living bone covering the surface of dead trabeculae. One year after arthroplasty there is no evidence of involvement of the left hip.
This 32-year-old man worked in compressed air for six months and suffered one attack of acute decompression sickness. Arthroplasty was performed four years later, two-and-a-half years after the onset of pain in the hip. (a) The load-bearing surface of the femoral head has sunk down leaving a surrounding bony ridge. The margin of the head is distorted by osteophytes and hyperplastic synovium. (b) A large wedge of pale dead bone remains. There is fracture of dead trabeculae running laterally from the upper foveal margin. Fibrous tissue marks the junction between dead and living bone. (c) In the inferomedial part of the head the bony meshwork is continuous between dead and living tissue but laterally dead bone has been replaced by collagen. Broad trabeculae are seen in the radiograph (d) forming a sclerotic margin outlining the dead tissue. The articular cartilage covering dead bone is well preserved but osteophytes have formed at the living inferior margin.

†Reproduced by kind permission of the Editor and publishers of *Excerpta Medica, Amsterdam.*
Ischaemia of bone

onset, but occasionally and especially when the humerus is involved, may be sudden and presumably associated with sudden collapse of the surface of the head.

Joint collapse and osteoarthritis

The articular cartilage covering dead bone and even that of a partially detached articular sequestrum (figs 9, 10, 11) usually is not thinned or fibrillated. Apart from some loss of lustre it may look relatively normal and if, in longstanding cases, there is loss of chondrocytes this is almost always confined to the deeper layers furthest from the nutrient synovial fluid. This relatively good preservation is in contrast to the severe degenerative changes which often occur in the cartilage covering living or revascularized bone in patients with collapse of the joint surface (Catto, 1965b). Then the cartilage becomes thin and fibrillated, its vascularization is associated with remodeling of the joint surface and the formation of marginal osteophytes (fig 11). These degenerative changes may be distinguished, at least at first, from those of primary osteoarthritis by the good preservation of the joint space, due to the normal thickness of the cartilage covering dead bone, and the relative sparing of the other articular surface forming the joint. Occasionally, the articular cartilage and the underlying dead bone may later become fragmented and ground away so that little or no evidence remains that bone necrosis was the underlying cause of the osteoarthritis (fig 12). Similarly, difficulties arise in attempting to confirm or refute the radiological impression that necrosis may be the cause of unusually rapid disintegration of an already osteoarthritic femoral head in some patients taking indomethacin, phenylbutazone and similar analgesics (Park, 1976). By the time the femoral head is removed it is often

![Fig 12a](http://jcp.bmj.com/)

![Fig 12b](http://jcp.bmj.com/)

![Fig 12c](http://jcp.bmj.com/)

![Fig 12d](http://jcp.bmj.com/)

---

This 33-year-old man worked in compressed air at pressures up to 34 psi but had never required recompression for acute decompression sickness. After 11 months he began to complain of pain in both hips and transferred to work in free air. Three years later lateral radiographs of both hips showed partial separation and fragmentation of an articular sequestrum in the weight-bearing-zone (a). Nine years after starting work there was severe bilateral osteoarthritis (b) and arthroplasty was performed. The sequestrum had presumably been ground away, the exposed bone trabeculae were sclerotic and both subchondral 'cysts' and marginal osteophytes had formed (d). Only the early radiograph (a) and the unusually sharply defined cartilage loss in the gross specimen (c) revealed that the osteoarthritis was secondary to previous necrosis.
This 58-year-old woman developed a fracture of the femoral neck two years after radiotherapy for a carcinoma of cervix. Two years later there was fracture of subchondral trabeculae with slight flattening of the load-bearing segment of the femoral head. Only the fringe of subchondral bone trabeculae in the partially separated articular sequestrum was necrotic. The underlying bone was viable but porotic, part of the varied picture of radiation osteitis seen throughout the bone. The radiological picture of femoral head collapse in this patient appeared to result from fracture of porotic live trabeculae and not to have been preceded by bone necrosis. Another irradiated patient with a typical radiograph (c) showed a similar histological picture in the collapsed femoral head.

†Reproduced by kind permission of the Editor and publishers of Excerpta Medica, Amsterdam.

Variations in patterns of necrosis

Regardless of the cause, the general pattern of juxta-articular necrosis and collapse of the joint surface with secondary degenerative changes is similar, apart from minor variations. In post-traumatic necrosis of the femoral head the necrotic bone tends to form a single compact subarticular mass. In some cases of dysbaric osteonecrosis, however, there may be an impression that areas of necrosis result from the confluence of smaller foci (deSèze et al, 1963), while dead bone may remain in the medial part of the femoral head rather than in the load-bearing area (Catto, 1976). These more complex appearances suggest that in contrast to post-traumatic necrosis, major vascular territories are not always involved.

The morbid anatomical changes in ‘idiopathic’ necrosis of the femoral head conform in general to the pattern already described (Patterson et al, 1964;
This 36-year-old male developed pain and collapse of the right talus four months after renal transplantation. The clinical radiograph shows collapse of the load-bearing surface of the femoral head, formation of an osteophyte at the lateral margin and loss of joint space. Increased bone density is not a striking feature. When the femoral head was removed a year later the synovial fluid contained gritty material and the femoral head was reduced to a stump.

A wedge of remaining dead bone can be seen where it is faintly outlined by a rather broad band of vascular loose fibrous tissue. Foci of marrow damage with lipophages were seen distal to this. Adjacent living bone trabeculae form a continuous meshwork with dead trabeculae. Little new bone has been laid down.

Dead marrow is seen on the right and adjacent to it vascular fibrous tissue abuts on a dead trabecula (× 120). The appearances here suggested an extending necrosis rather than revascularization and healing.
Merle d'Aubigné et al, 1965; Welfling, 1971) as do many examples of necrosis associated with steroid therapy (Cruess et al, 1968; Fisher et al, 1969; Cruess, 1976). However, some specimens from steroid-treated patients or those with 'idiopathic' necrosis show changes suggesting that the necrosis is extending rather than that it has undergone even incomplete revascularization and healing. In these cases, which include collapsed, juxtaarticular lesions (fig 14), the necrotic zone is surrounded by a wide reactive margin with congested vessels, loose fibrous tissue, macrophages and sometimes fibrinous exudate (fig 15) while beyond this foci of damage are seen in the fatty marrow (Johnson, 1964). Dead trabeculae may extend a little way beyond the main zone of necrosis and new bone formation on their surfaces is often minimal. The compact zone of bone and marrow necrosis is then not outlined histologically or radiologically by sclerosis due to broadened trabeculae (figs 14 and 15).

Some unsolved problems

The cause of bone necrosis, especially in the 'idiopathic' and steroid-treated groups, is controversial. Some authors regard localized subchondral osteoporosis, followed by trabecular fracture as the initial lesion, any necrosis being secondary to this structural failure (Solomon, 1973). While this sequence of events may explain some lesions, in others necrosis appears to precede localized trabecular porosis or fracture (fig 15) (Catto, 1976). Another suggestion is that systemic fat emboli, perhaps derived from a fatty liver, cause the bone infarction (Fisher et al, 1969).
Ischaemia of bone

Jones, 1971). Unfortunately the precise location of fatty globules demonstrated in frozen sections of bone is not always easy. The pathogenesis remains uncertain and needs further investigation.

The biggest unsolved puzzle, and certainly the most important clinically, is why revascularization is so often incomplete, even in the non-traumatic cases where healing of a fracture does not delay the spread of revascularization. In some cases of juxtaarticular necrosis with collapse, fracture through dead trabeculae may occur at the junction between dead and living bone. This secondary fracture may then effectively prevent further extension of revascularization. In many specimens, however, the fracture through dead trabeculae occurs at some distance from the furthest extent of revascularization (fig 11) while incomplete and apparently halted revascularization is seen also in medullary lesions (fig 7) and juxtaarticular ones without trabecular fracture (fig 8). The interruption of repair is not so difficult to understand in the steroid-treated patients who, whatever the precise cause of the necrosis, are continuously exposed to the hormone. Recently it has been suggested that the failure of revascularization of the femoral head in children with Perthes' disease might be due to more than one ischaemic episode (McKibbin, 1975; Inoue et al., 1976; Jensen and Lauritzen, 1976). While there is rather similar suggestive evidence in some specimens from patients with dysbaric osteonecrosis (Catto, 1976) failure of revascularization is seen in the occasional patient with a single exposure to compressed air. Multiple ischaemic episodes seem unlikely therefore to be the whole explanation. It has been suggested that there may be a critical size beyond which a bone infarct fails to revascularize completely (Boyd, 1957).

Many important questions thus remain to be answered by the pathologist. From a practical point of view it is worth examining any available material from groups of patients at risk, whether or not they have radiological evidence of necrosis. It is from the earlier and unsuspected examples that one may obtain some clue to the pathogenesis. Equally it is important to examine bones with radiological abnormalities because the nature of the underlying tissue changes still remains speculative and controversial, especially in the less common conditions.

I am much indebted to Dr J. D. Briggs of the Renal Unit and to many orthopaedic colleagues at the Western Infirmary, Glasgow, for their help and for clinical information about their patients. The MRC Decompression Sickness Panel has been generous in making available to me specimens for study. My thanks are due to Mr Peter Kerrigan and Mr Alasdair Smith of the Pathology Department Photographic Unit, for preparing the illustrations.

References


Further reading

**Trauma**


**Radiation**


**Dysbarism**


**Haemoglobinopathies**


Graham, G. S. (1924). A case of sickle cell anemia with necropsy. *Archives of Internal Medicine*, 34, 778-800.


**Pancreatic disease**


**Gaucher’s disease**


**Steroid therapy**


*‘Idiopathic’ (earlier papers include steroid-treated cases)*


