RT Journal Article SR Electronic T1 ACP Best Practice No 166 JF Journal of Clinical Pathology JO J Clin Pathol FD BMJ Publishing Group Ltd and Association of Clinical Pathologists SP 827 OP 830 VO 54 IS 11 A1 A M Cruickshank YR 2001 UL http://jcp.bmj.com/content/54/11/827.abstract AB After subarachnoid haemorrhage (SAH), cerebral angiography is usually performed to establish a site of bleeding, which may then be treated surgically to prevent a potentially catastrophic re-bleed. The investigation of choice in the diagnosis of SAH is computerised tomography (CT). However, because CT can miss some patients with SAH, cerebrospinal fluid (CSF) spectrophotometry should be performed in those patients with negative or equivocal CT scans or those who have presented several days after the suspected bleed. Spectrophotometry should aim to detect the presence of both oxyhaemoglobin and bilirubin because either one or both of these pigments may contribute to xanthochromia following SAH. CSF supernatant is scanned using a double beam spectrophotometer at wavelengths between 350 nm and 650 nm. Oxyhaemoglobin alone produces an absorption peak at 413–415 nm, bilirubin alone produces a broad peak at 450–460 nm, and bilirubin together with oxyhaemoglobin produce a shoulder at 450–460 nm on the downslope of the oxyhaemoglobin peak. To minimise the frequency of false positive and false negative results, a protocol has been developed, which is described.