Skip to main content

The Biology of FoxP3: A Key Player in Immune Suppression during Infections, Autoimmune Diseases and Cancer

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 665))

Abstract

The Transcription factor FoxP3belongs to the forkhead/winged-helix familyoftranscriptional regulators and shares general structural features with other FoxP family members. FoxP3 functions as a master of transcription for the development of regulatory T-cells (Treg cells) both in humans and in mice. Natural genetic mutations of FoxP3 that disrupt its function in humans result in an autoimmune syndrome called Immune Polyendocrinopathy, Enteropathy, X-linked (IPEX) and in mice, its deletion causes the Scurfy phenotype, with similar pathology. The finding that FoxP3 is required for the development and function of Tregs has led to an explosion of research in determining its regulation and function in the immune system. Understanding the biological properties of FoxP3 has a wide range of implications for immune tolerance, autoimmune disorders, inflammation and immune response to infectious diseases and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T-cells. Nat Immunol 2003;4(4):330–336.

    Article  CAS  PubMed  Google Scholar 

  2. Hori S, Nomura T, Sakaguchi S. Control of regulatory T-cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057–1061.

    Article  CAS  PubMed  Google Scholar 

  3. Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27(1):18–20.

    Article  CAS  PubMed  Google Scholar 

  4. Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1):20–21.

    Article  CAS  PubMed  Google Scholar 

  5. Oswald-Richter K, Grill SM, Shariat N et al. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol 2004; 2(7):E198.

    Article  PubMed  Google Scholar 

  6. Aarts-Riemens T, Emmelot ME, Verdonck LF et al. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T-cells from CD4(+)CD25(−) cells. Eur J Immunol 2008; 38(5): 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  7. O’Garra A, Vieira P. Twenty-first century Foxp3. Nat Immunol 2003; 4(4):304–306.

    Article  PubMed  CAS  Google Scholar 

  8. Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T-cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188(2):287–296.

    Article  CAS  PubMed  Google Scholar 

  9. Zwar TD, van Driel IR, Gleeson PA. Guarding the immune system: suppression of autoimmunity by CD4+CD25+ immunoregulatory T-cells. Immunology and Cell Biology 2006; 84(6):487–501.

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi S, Wing K, Miyara M. Regulatory T-cells—a brief history and perspective. Eur J Immunol 2007; 37(Suppl 1):S116–123.

    Article  CAS  Google Scholar 

  11. Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell suppression—a diverse arsenal for a moving target. Immunology 2008; 124(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  12. Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a model of immune dysregulation. Curr Opin Allergy Clin Immunol 2002; 2(6):481–487.

    Article  PubMed  Google Scholar 

  13. Li B, Greene MI. FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 2007; 6(12):1432–1436.

    CAS  PubMed  Google Scholar 

  14. Li B, Samanta A, Song X et al. FOXP3 ensembles in T-cell regulation. Immunol Rev 2006; 212:99–113.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T-cells. Nat Rev Immunol 2007; 7(4):305–310.

    Article  CAS  PubMed  Google Scholar 

  16. Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003; 15(4):430–435.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T-cell lineage. Nat Immunol 2007; 8(5):457–462.

    Article  CAS  PubMed  Google Scholar 

  18. Brunkow ME, Jeffery EW Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  19. Wu Y Borde M, Heissmeyer V et al. FOXP3 controls regulatory T-cell function through cooperation with NFAT. Cell 2006; 126(2):375–387.

    Article  CAS  PubMed  Google Scholar 

  20. Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T-cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 2005; 102(14):5138–5143.

    Article  CAS  PubMed  Google Scholar 

  21. Tao R, de Zoeten EF, Ozkaynak E et al. Deacetylase inhibition promotes the generation and function of regulatory T-cells. Nat Med 2007; 13(11):1299–1307.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng Y, Josefowicz SZ, Kas A et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T-cells. Nature 2007; 445(7130):936–940.

    Article  CAS  PubMed  Google Scholar 

  23. Ono M, Yaguchi H, Ohkura N et al. Foxp3 controls regulatory T-cell function by interacting with AMLI/Runx1. Nature 2007; 446(7136):685–689.

    Article  CAS  PubMed  Google Scholar 

  24. Li B, Samanta A, Song X et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 2007; 104(11):4571–4576.

    Article  CAS  PubMed  Google Scholar 

  25. Chen C, Rowell EA, Thomas RM et al. Transcriptional regulation by Foxp3 is associatedwith direct promoter occupancy and modulation of histone acetylation. J Biol Chem 2006; 281(48):36828–36834.

    Article  CAS  PubMed  Google Scholar 

  26. Fontenot JD, Rasmussen JP, Williams LM et al. Regulatory T-cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005; 22(3):329–341.

    Article  CAS  PubMed  Google Scholar 

  27. Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol 2006; 24:209–226.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, Lopes JE, Chong MM et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008; 453(7192):236–240.

    Article  CAS  PubMed  Google Scholar 

  29. Smith EL, Finney HM, Nesbitt AM et al. Splice variants of human FOXP3 are functional inhibitors of human CD4+ T-cell activation. Immunology 2006; 119(2):203–211.

    Article  CAS  PubMed  Google Scholar 

  30. Du J, Huang C, Zhou B et al. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 2008; 180(7):4785–4792.

    CAS  PubMed  Google Scholar 

  31. Khattri R, Cox T, Yasayko SA et al. An essential role for Scurfin in CD4+CD25+ T-regulatory cells. Nat Immunol 2003; 4(4):337–342.

    Article  CAS  PubMed  Google Scholar 

  32. Sugimoto N, Oida T, Hirota K et al. Foxp3-dependent and-independent molecules specific for CD25+CD4+ natural regulatory T-cells revealed by DNA microarray analysis. Int Immunol 2006; 18(8):1197–1209.

    Article  CAS  PubMed  Google Scholar 

  33. Gavin MA, Rasmussen JP, Fontenot JD et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007; 445(7129):771–775.

    Article  CAS  PubMed  Google Scholar 

  34. Lin W Haribhai D, Relland LM et al. Regulatory T-cell development in the absence of functional Foxp3. Nat Immunol 2007; 8(4):359–368.

    Article  CAS  PubMed  Google Scholar 

  35. Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25-naive T-cells to CD4+CD25+ regulatory T-cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198(12):1875–1886.

    Article  CAS  PubMed  Google Scholar 

  36. Fantini MC, Becker C, Monteleone G et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25− T-cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172(9):5149–5153.

    CAS  PubMed  Google Scholar 

  37. Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T-cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007; 110(8):2983–2990.

    Article  CAS  PubMed  Google Scholar 

  38. Shevach EM, Tran DQ, Davidson TS et al. The critical contribution of TGF-beta to the induction of Foxp3 expression and regulatory T-cell function. Eur J Immunol 2008; 38(4):915–917.

    Article  CAS  PubMed  Google Scholar 

  39. Allan SE, Crome SQ, Crellin NK et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007; 19(4):345–354.

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Ioan-Facsinay A, van der Voort EI et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T-cells. Eur J Immunol 2007; 37(1):129–138.

    Article  CAS  PubMed  Google Scholar 

  41. Hori S. Rethinking the molecular definition of regulatory T-cells. Eur J Immunol 2008; 38(4):928–930.

    Article  CAS  PubMed  Google Scholar 

  42. Selvaraj RK, Geiger TL. A kinetic and dynamic analysis of Foxp3 induced in T-cells by TGF-beta. J Immunol 2007; 179(2):11 p following 1390.

    PubMed  Google Scholar 

  43. Marie JC, Letterio JJ, Gavin M et al. TGF-betal maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T-cells. J Exp Med 2005; 201(7):1061–1067.

    Article  CAS  PubMed  Google Scholar 

  44. Li MO, Sanjabi S, Flavell RA. Transforming growth factor-beta controls development, homeostasis and tolerance of T-cells by regulatory T-cell-dependent and-independent mechanisms. Immunity 2006; 25(3):455–471.

    Article  CAS  PubMed  Google Scholar 

  45. Ziegler SF. FOXP3: not just for regulatory T-cells anymore. Eur J Immunol 2007; 37(1):21–23.

    Article  CAS  PubMed  Google Scholar 

  46. Wang R, Wan Q, Kozhaya L et al. Identification of a regulatory T-cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression. PLoS ONE 2008; 3(7):e2705.

    Article  PubMed  CAS  Google Scholar 

  47. Samon JB, Champhekar A, Minter LM et al. Notch1 and TGFbetal cooperatively regulate Foxp3 expression and the maintenance of peripheral regulatory T-cells. Blood 2008; 112(5):1813–1821.

    Article  CAS  PubMed  Google Scholar 

  48. Burchill MA, Yang J, Vogtenhuber C et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T-cells. J Immunol 2007; 178(1):280–290.

    CAS  PubMed  Google Scholar 

  49. Mantel PY Ouaked N, Ruckert B et al. Molecular mechanisms underlying FOXP3 induction in human T-cells. J Immunol 2006; 176(6):3593–3602.

    CAS  PubMed  Google Scholar 

  50. Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 2008; 205(3):565–574.

    Article  CAS  PubMed  Google Scholar 

  51. Sauer S, Bruno L, Hertweck A et al. T-cell receptor signaling controls Foxp3 expression via PI3K, Akr and mTOR. Proc Natl Acad Sci USA 2008; 105(22):7797–7802.

    Article  CAS  PubMed  Google Scholar 

  52. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T-cells. Blood 2005; 105(12):4743–4748.

    Article  CAS  PubMed  Google Scholar 

  53. Strauss L, Whiteside TL, Knights A et al. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T-cells cultured with rapamycin. J Immunol 2007; 178(1):320–329.

    CAS  PubMed  Google Scholar 

  54. Yong PL, Russo P, Sullivan KE. Use of sirolimus in IPEX and IPEX-like children. J Clin Immunol 2008; 28(5):581–587.

    Article  CAS  PubMed  Google Scholar 

  55. Kim CH. Regulation of FoxP3 regulatory T-cells and Th17 cells by retinoids. Clin Dev Immunol 2008; 2008:416910.

    PubMed  Google Scholar 

  56. Sun CM, Hall JA, Blank RB et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T-reg cells via retinoic acid. J Exp Med 2007; 204(8):1775–1785.

    Article  CAS  PubMed  Google Scholar 

  57. Gershwin ME, Lentz DR, Beach RS et al. Nutritional factors and autoimmunity. IV. Dietary vitamin A deprivation induces a selective increase in IgM autoantibodies and hypergammaglobulinemia in New Zealand Black mice. J Immunol 1984; 133(1):222–226.

    CAS  PubMed  Google Scholar 

  58. Hill JA, Hall JA, Sun CM et al. Retinoic acid enhances Foxp3 induction indirectly by relievinginhibition from CD4+CD44hi Cells. Immunity 2008; 29(5):758–770.

    Article  CAS  PubMed  Google Scholar 

  59. Baron U, Floess S, Wieczorek G et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T-cells from activated FOXP3 (+) conventional T-cells. Eur J Immunol 2007; 37(9):2378–2389.

    Article  CAS  PubMed  Google Scholar 

  60. Polansky JK, Kretschmer K, Freyer J et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol 2008; 38(6):1654–1663.

    Article  CAS  PubMed  Google Scholar 

  61. Tone Y, Furuuchi K, Kojima Y et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 2008; 9(2):194–202.

    Article  CAS  PubMed  Google Scholar 

  62. Takaki H, Ichiyama K, Koga K et al. STAT6 Inhibits TGF-beta1-mediated Foxp3 induction through direct binding to the Foxp3 promoter, which is reverted by retinoic acid receptor. J Biol Chem 2008; 283(22):14955–14962.

    Article  CAS  PubMed  Google Scholar 

  63. Lal G, Zhang N, van der Touw W et al. Epigenetic regulation of Foxp3 expression in regulatory T-cells by DNA methylation. J Immunol 2009; 182(1):259–273.

    CAS  PubMed  Google Scholar 

  64. Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T-cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10(9):942–949.

    Article  CAS  PubMed  Google Scholar 

  65. Ghiringhelli F, Puig PE, Roux S et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4+CD25+ regulatory T-cell proliferation. J Exp Med 2005; 202(7):919–929.

    Article  CAS  PubMed  Google Scholar 

  66. Zhou G, Drake CG, Levitsky HI. Amplification of tumor-specific regulatory T-cells following therapeutic cancer vaccines. Blood 2006; 107(2):628–636.

    Article  CAS  PubMed  Google Scholar 

  67. Zhou G, Levitsky HI. Natural regulatory T-cells and de novo-induced regulatory T-cells contribute independently to tumor-specific tolerance. J Immunol 2007; 178(4):2155–2162.

    CAS  PubMed  Google Scholar 

  68. Bui JD, Uppaluri R, Hsieh CS et al. Comparative analysis of regulatory and effector T-cells in progressively growing versus rejecting tumors of similar origins. Cancer Res 2006; 66(14):7301–7309.

    Article  CAS  PubMed  Google Scholar 

  69. Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 2007; 7(11):880–887.

    Article  CAS  PubMed  Google Scholar 

  70. Liu VC, Wong LY, Jang T et al. Tumor evasion of the immune system by converting CD4+CD25− T-cells into CD4+CD25+ T-regulatory cells: role of tumor-derived TGF-beta. J Immunol 2007; 178(5):2883–2892.

    CAS  PubMed  Google Scholar 

  71. Curti A, Pandolfi S, Valzasina B et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25− into CD25+ T-regulatory cells. Blood 2007; 109(7):2871–2877.

    CAS  PubMed  Google Scholar 

  72. Fallarino F, Grohmann U, You S et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T-cell receptor zeta-chain and induce a regulatory phenotype in naive T-cells. J Immunol 2006; 176(11):6752–6761.

    CAS  PubMed  Google Scholar 

  73. Li B, Saouaf SJ, Samanta A et al. Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression. Curr Opin Immunol 2007; 19(5):583–588.

    Article  CAS  PubMed  Google Scholar 

  74. Zuo T, Liu R, Zhang H et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. J Clin Invest 2007; 117(12):3765–3773.

    CAS  PubMed  Google Scholar 

  75. Belkaid Y, Piccirillo CA, Mendez S et al. CD4+CD25+ regulatory T-cells control Leishmania major persistence and immunity. Nature 2002; 420(6915):502–507.

    Article  CAS  PubMed  Google Scholar 

  76. Aseffa A, Gumy A, Launois P et al. The early IL-4 response to Leishmania major and the resulting Th2 cell maturation steering progressive disease in BALB/c mice are subject to the control of regulatory CD4+CD25+ T-cells. J Immunol 2002; 169(6):3232–3241.

    CAS  PubMed  Google Scholar 

  77. Belkaid Y. Role of Foxp3-positive regulatory T-cells during infection. Eur J Immunol 2008; 38(4):918–921.

    Article  CAS  PubMed  Google Scholar 

  78. Rouse BT, Horohov DW. Immunosuppression in viral infections. Rev Infect Dis 1986; 8(6):850–873.

    CAS  PubMed  Google Scholar 

  79. Tortorella D, Gewurz BE, Furman MH et al. Viral subversion of the immune system. Annu Rev Immunol 2000; 18:861–926.

    Article  CAS  PubMed  Google Scholar 

  80. Rouse BT, Deshpande S. Viruses and autoimmunity: an affair but not a marriage contract. Rev Med Virol 2002; 12(2):107–113.

    Article  PubMed  Google Scholar 

  81. Dittmer U, He H, Messer RJ et al. Functional impairment of CD8 (+) T-cells by regulatory T-cells during persistent retroviral infection. Immunity 2004; 20(3):293–303.

    Article  CAS  PubMed  Google Scholar 

  82. Suvas S, Kumaraguru U, Pack CD et al. CD4+CD25+ T-cells regulate virus-specific primary and memory CD8+ T-cell responses. J Exp Med 2003; 198(6):889–901.

    Article  CAS  PubMed  Google Scholar 

  83. Iwashiro M, Messer RJ, Peterson KE et al. Immunosuppression by CD4+ regulatory T-cells induced by chronic retroviral infection. Proc Natl Acad Sci USA 2001; 98(16):9226–9230.

    Article  CAS  PubMed  Google Scholar 

  84. Unutrnaz D. T-cell signaling mechanisms that regulate HIV-1 infection. Immunol Res 2001; 23(2–3):167–177.

    Article  Google Scholar 

  85. Grossman Z, Meier-Schellersheim M, Sousa AE et al. CD4+ T-cell depletion in HIV infection: Are we closer to understanding the cause? Nat Med 2002; 8(4):319–323.

    Article  CAS  PubMed  Google Scholar 

  86. Fauci AS. Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 1993; 262(5136):1011–1018.

    Article  CAS  PubMed  Google Scholar 

  87. Dunham RM, Cervasi B, Brenchley JM et al. CD127 and CD25 expression defines CD4+ T-cell subsets that are differentially depleted during HIV infection. J Immunol 2008; 180(8):5582–5592.

    CAS  PubMed  Google Scholar 

  88. Jiang Q, Zhang L, Wang R et al. FoxP3+CD4+ regulatory T-cells play an important role in acute HIV-l infection in humanized Rag2-/-gammaC-/-mice in vivo. Blood 2008; 112(7):2858–2868.

    Article  CAS  PubMed  Google Scholar 

  89. Weiss L, Donkova-Petrini V, Caccavelli L et al. Human immunodeficiency virus-driven expansion of CD4+CD25+ Regulatory T-cells which suppress HIV-specitic CD4 T-cell responses in HIV-infected patients. Blood 2004; Nov 15;104(10):3249–56

    Article  CAS  PubMed  Google Scholar 

  90. Kinter AL, Hennessey M, Bell A et al. CD25 (+)CD4 (+) regulatory T-cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4 (+) and CD8 (+) HIV-specinc T-cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 2004; 200(3):331–343.

    Article  CAS  PubMed  Google Scholar 

  91. Aandahl EM, Michaelsson J, Moretto WJ et al. Human CD4+ CD25+ regulatory T-cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol 2004; 78(5):2454–2459.

    Article  CAS  PubMed  Google Scholar 

  92. Rouse BT, Sarangi PP, Suvas S. Regulatory T-cells in virus infections. Immunol Rev 2006; 212:272–286.

    Article  CAS  PubMed  Google Scholar 

  93. Holmes D, Knudsen G, Mackey-Cushman S et al. FoxP3 enhances HIV-l gene expression by modulating NFkappaB occupancy at the long terminal repeat in human T-cells. J Biol Chem 2007; 282(22): 15973–15980.

    Article  CAS  PubMed  Google Scholar 

  94. Grant C, Oh U, Fugo K et al. Foxp3 represses retroviral transcription by targeting both NF-kappaB and CREB pathways. PLoS Pathog 2006; 2(4):e33.

    Article  CAS  PubMed  Google Scholar 

  95. Selliah N, Zhang M, White S et al. FOXP3 inhibits HIV-1 infection of CD4 T-cells via inhibition of LTR transcriptional activity. Virology 2008; 381(2):161–167.

    Article  CAS  PubMed  Google Scholar 

  96. Soiffer R. Immune modulation and chronic graft-versus-host disease. Bone Marrow Transplant 2008; 42(Suppll):S66–S69.

    Article  CAS  PubMed  Google Scholar 

  97. Kang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T-cells in transplantation: progress, challenges and prospects. Am J Transplant 2007; 7(6):1457–1463.

    Article  CAS  PubMed  Google Scholar 

  98. Vandenbark AA, Offner H. Critical evaluation of regulatory T-cells in autoimmunity: are the most potent regulatory specificities being ignored? Immunology 2008; 125(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  99. Olivares-Villagomez D, Wang Y Lafaille JJ. Regulatory CD4 (+) T-cells expressing endogenous T-cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 1998; 188(10):1883–1894.

    Article  CAS  PubMed  Google Scholar 

  100. Iwase K, Shimada A, Kawai T et al. FOXP3/Scurnngene polymorphism is associated with adult onset type 1 diabetes in Japanese, especially in women and slowly progressive-type patients. Autoimmunity 2008:1.

    Google Scholar 

  101. Kivling A, Nilsson L, Falth-Magnusson K et al. Diverse foxp3 expression in children with type 1 diabetes and celiac disease. Ann NY Acad Sci 2008; 1150:273–277.

    Article  PubMed  Google Scholar 

  102. Pop SM, Wong CP, Culton DA et al. Single cell analysis shows decreasing FoxP3 and TGFbetal coexpressing CD4+CD25+ regulatory T-cells during autoimmune diabetes. J Exp Med 2005; 201(8):1333–1346.

    Article  CAS  PubMed  Google Scholar 

  103. Schneider A, Rieck M, Sanda S et al. The effector T-cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T-cells. J Immunol 2008; 181(10):7350–7355.

    CAS  PubMed  Google Scholar 

  104. Waid DM, Vaitaitis GM, Pennock ND et al. Disruption of the homeostatic balance between autoaggressive (CD4+CD40+) and regulatory (CD4+CD25+FoxP3+) T-cells promotes diabetes. J Leukoc Biol 2008; 84(2):431–439.

    Article  CAS  PubMed  Google Scholar 

  105. Feuerer M, Jiang W Holler PD et al. Enhanced thymic selection of FoxP3+ regulatory T-cells in the NOD mouse model of autoimmune diabetes. Proc Natl Acad Sci USA 2007; 104(46):18181–18186.

    Article  CAS  PubMed  Google Scholar 

  106. Mellanby RJ, Thomas D, Phillips JM et al. Diabetes in non-obese diabetic mice is not associated with quantitative changes in CD4+ CD25+ Foxp3+ regulatory T-cells. Immunology 2007; 121(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  107. Jaeckel E, Mpofu N, Saal N et al. Role of regulatory T-cells for the treatment of type 1 diabetes mellitus. Horm Metab Res 2008; 40(2):126–136.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Unutmaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer+Business Media

About this chapter

Cite this chapter

Mercer, F., Unutmaz, D. (2009). The Biology of FoxP3: A Key Player in Immune Suppression during Infections, Autoimmune Diseases and Cancer. In: Maiese, K. (eds) Forkhead Transcription Factors. Advances in Experimental Medicine and Biology, vol 665. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1599-3_4

Download citation

Publish with us

Policies and ethics