Skip to main content

Diagnostics for Amyloid Fibril Formation: Where to Begin?

  • Protocol
  • First Online:
Protein Folding, Misfolding, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 752))

Abstract

Twenty-five proteins are known to form amyloid fibrils in vivo in association with disease (Westermark et al., Amyloid 12:1–4, 2005). However, the fundamental ability of a protein to form amyloid-like fibrils is far more widespread than in just the proteins associated with disease, and indeed this property can provide insight into the basic thermodynamics of folding and misfolding pathways. But how does one determine whether a protein has formed amyloid-like fibrils? In this chapter, we cover the basic steps toward defining the amyloid-like properties of a protein and how to measure the kinetics of fibrillization. We describe several basic tests for aggregation and the binding to two classic amyloid-reactive dyes, Congo Red, and thioflavin T, which are key indicators to the presence of fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virchow R. (1854) Ueber eine im gehirn und ruckenmark des menschen aufgefunde substanz mit der chemishen reaction der cellulose. Virchows Arch Path Anat 6, 135–138.

    Google Scholar 

  2. Divry P., and Florkin M. (1927) Sur les proprietes optiques de l’amyloide.

    Google Scholar 

  3. Comptes Rendus de la Societe de Biologie 97, 1808–1810.

    Google Scholar 

  4. Missmahl H. P., and Hartwig M. (1953) Polarisationsoptische untersuchungen an der amyloidsubstanz. Virchows Archiv 324, 489–508.

    Article  PubMed  CAS  Google Scholar 

  5. Westermark P., Benson M. D., Buxbaum J. N., Cohen A. S., Frangione B., Ikeda S.-I., Masters C. L., Merlini G., Saraiva M. J., and Sipe J. D. (2005) Amyloid: Toward terminology clarification report from the nomenclature committee of the international society of amyloidosis. Amyloid 12, 1–4.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen A. S., and Calkins E. (1959) Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature 183, 1202–1203.

    Article  PubMed  CAS  Google Scholar 

  7. Chiti F., and Dobson C. M. (2006) Protein misfolding, functional amyloid, and human disease. Ann. Rev. Biochem. 75, 333–366.

    Article  PubMed  CAS  Google Scholar 

  8. Sipe J. D., and Cohen A. S. (2000) Review: History of the amyloid fibril. J. Struct. Biol. 130, 88–98.

    Article  PubMed  CAS  Google Scholar 

  9. Serpell L. C. (2000) Alzheimer’s amyloid fibrils: Structure and assembly. Biochim. Biophys. Acta 1502, 16–30.

    Article  PubMed  CAS  Google Scholar 

  10. Sunde M., and Blake C. (1997) The structure of amyloid fibrils by electron microscopy and x-ray diffraction. Adv. Protein Chem. 50, 123–159.

    Article  PubMed  CAS  Google Scholar 

  11. Booth D. R., Sunde M., Bellotti V., Robinson C. V., Hutchinson W. L., Fraser P. E., Hawkins P. N., Dobson C. M., Radford S. E., Blake C. C., and Pepys M. B. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793.

    Article  PubMed  CAS  Google Scholar 

  12. Fandrich M., Fletcher M. A., and Dobson C. M. (2001) Amyloid fibrils from muscle myoglobin. Nature 410, 165–166.

    Article  PubMed  CAS  Google Scholar 

  13. Chapman M. R., Robinson L. S., Pinkner J. S., Roth R., Heuser J., Hammar M., Normark S., and Hultgren S. J. (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855.

    Article  PubMed  CAS  Google Scholar 

  14. Hatters D. M., Zhong N., Rutenber E., and Weisgraber K. H. (2006) Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J. Mol. Biol. 361, 932–944.

    Article  PubMed  CAS  Google Scholar 

  15. Klunk W. E., Jacob R. F., and Mason R. P. (1999) Quantifying amyloid β-peptide (Aβ) aggregation using the congo red-Aβ (CR-Aβ) spectrophotometric assay. Anal Biochem 266, 66–76.

    Article  PubMed  CAS  Google Scholar 

  16. Vassar P. S., and Culling C. F. (1959) Fluorescent stains, with special reference to amyloid and connective tissues. Arch. Pathol. 68, 487–498.

    PubMed  CAS  Google Scholar 

  17. Kelenyi G. (1967) On the histochemistry of azo group-free thiazole dyes. J Histochem. Cytochem. 15, 172–180.

    Article  PubMed  CAS  Google Scholar 

  18. LeVine H., 3rd. (1993) Thioflavine T interaction with synthetic alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 2, 404–410.

    Article  PubMed  CAS  Google Scholar 

  19. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  20. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., and Klenk D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  21. True H. L., and Lindquist S. L. (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483.

    Article  PubMed  CAS  Google Scholar 

  22. Hatters D. M., MacPhee C. E., Lawrence L. J., Sawyer W. H., and Howlett G. J. (2000) Human apolipoprotein C-II forms twisted amyloid ribbons and closed loops. Biochemistry 39, 8276–8283.

    Article  PubMed  CAS  Google Scholar 

  23. Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny M. Hatters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hatters, D.M., Griffin, M.D.W. (2011). Diagnostics for Amyloid Fibril Formation: Where to Begin?. In: Hill, A., Barnham, K., Bottomley, S., Cappai, R. (eds) Protein Folding, Misfolding, and Disease. Methods in Molecular Biology, vol 752. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-223-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-223-0_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-221-6

  • Online ISBN: 978-1-60327-223-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics