Skip to main content
Log in

Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Using morphological and molecular approaches, we characterized cisplatin-induced cell necrosis and apoptosis in rat kidney. Male Sprague-Dawley rats (n=5 per group) received a single intraperitoneal injection of either cisplatin (5 mg/kg) or saline, and were killed on day 5. Functionally, cisplatin-treated rats developed polyuric acute renal failure. Morphologically, kidneys of cisplatin-treated rats showed overt tubular necrosis associated with apoptosis in the corticomedullary junction. Cell necrosis was segment-specific and was distributed in radial fashion at the corticomedullary junction. The apoptosis was limited to discrete cells in apparently intact tubules in the vicinity of the necrosed tubules. The apoptotic changes were confirmed by TUNEL (TdT-mediated deoxyuridine triphosphate nick-end labeling) and staining for cleaved caspase-3. Analysis of outer medullary tissue for apoptosis-related molecules by RNase protection assay revealed a significant increase in the expression of pro-apoptotic mRNAs (caspases 1, 2, and 8, and Bax) in cisplatin-treated rats. On the other hand, the expression of mRNA for the anti-apoptotic Bcl-2 did not change, resulting in a decrease in relative ratio of Bcl-2/Bax, and thus favoring apoptosis. The above changes were paralleled by a marked increase in caspase-3 precursor, the executioner protease. Furthermore, these pro-apoptotic molecular changes were associated with a 3-fold increase in the activity of JNK1 in the outer medulla, but not in the cortex, of cisplatin-treated rat kidneys, localizing to the site of maximal apoptosis. Upregulation of JNK1 activity in the outer medulla was not accompanied by changes in the activities of ERK or p38 kinase. In conclusion, these data suggest that cisplatin-induced apoptotic cell death in native kidney may be mediated by cooperative activation of the JNK1 pathway and Bax in the outer medulla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A,B
Fig. 2A–F
Fig. 3A,B
Fig. 4
Fig. 5
Fig. 6
Fig. 7A,B

Similar content being viewed by others

References

  • Abbate M, Remuzzi G (1996) Acceleration of recovery in acute renal failure: from cellular mechanisms of tubular repair to innovative targeted therapies. Ren Fail 18:377–388

    CAS  PubMed  Google Scholar 

  • Blanc C, Deveraux QL, Krajewski S, Janicke RU, Porter AG, Reed JC, Jaggi R, Marti A (2000) Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60:4386–4390

    CAS  PubMed  Google Scholar 

  • Blatt NB, Glick GD (2001) Signaling pathways and effector mechanisms pre-programmed cell death. Bioorg Med Chem 9:1371–1384

    Article  CAS  PubMed  Google Scholar 

  • Cacini W, Harden EA, Skau KA (1993) Reduced renal accumulation and toxicity of cisplatin in experimental galactosemia. Proc Soc Exp Biol Med 203:348–353

    CAS  PubMed  Google Scholar 

  • Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling. Int J Oncol 16:651–662

    CAS  PubMed  Google Scholar 

  • Chen Z, Seimiya H, Naito M, Mashima T, Kizaki A, Dan S, Imaizumi M, Ichijo H, Miyazono K, Tsuruo T (1999) ASK 1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 18:173–180

    Article  CAS  PubMed  Google Scholar 

  • Cummings BS, Schnellmann RG (2002) Cisplatin-induced renal cell apoptosis: Capsase 3-dependent and -independent pathways. J Pharmacol Exp The 302:8–17

    Article  CAS  Google Scholar 

  • Dobyan DC, Levi J, Jacobs C, Kosek J, Weiner MW (1980) Mechanism of cis-platinum nephrotoxicity II; Morphologic observation. J Pharmacol Exp Ther 213:551–556

    CAS  PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: Structure, activation, substrates, and function during apoptosis. Annu Rev Biochem 68:383–424

    CAS  PubMed  Google Scholar 

  • Ecelbarger CA, Sands JM, Doran JJ, Cacini W, Kishore BK (2001) Expression of salt and urea transporters in rat kidney during cisplatin-induced polyuria. Kidney Int 60:2274–2282

    Article  CAS  PubMed  Google Scholar 

  • Goldstein RS, Mayor G (1983) The nephrotoxicity of cisplatin. Life Sci 32:685–690

    CAS  PubMed  Google Scholar 

  • Goldstein RS, Noordewier B, Bond JT, Hook JB, Mayor GH (1981) cis-Dicholordiammineplatinum nephrotoxicity: time course and dose response of renal functional impairment. Toxicol Appl Pharmacol 60:163–175

    CAS  PubMed  Google Scholar 

  • Huang Q, Dunn RT, Jayadev S, DiSorbo O, Pack FD, Farr SB, Stoll RE, Blamchard KT (2001) Assessment of cisplatin-induced nephrotoxicity by microarray technology. Toxicol Sci 63:196–207

    Article  CAS  PubMed  Google Scholar 

  • Jäättelä M (2002) Programmed cell death: many ways for cells to die decently. Ann Med 34:480–488

    Article  PubMed  Google Scholar 

  • Kaushal GP, Kaushal V, Hong X, Shah SV (2001) Role and regulation of caspases in cisplatin-induced injury to renal tubular epithelial cells. Kidney Int 60:1726–1736

    Article  CAS  PubMed  Google Scholar 

  • Kishore BK, Krane CM, DiIulio D, Menon AG, Cacini W (2000) Expression of renal aquaporins 1, 2 and 3 in a rat model of cisplatin-induced polyuria. Kidney Int 58:701–711

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Tsukamoto I (2001) Prolonged Jun N-terminal kinase (JNK) activation and the upregulation of p53 and p21 (WAF1/CIP1) preceded apoptosis in hepatocytes after partial hepatectomy and cisplatin. Biochim Biophys Acta 1537:79–88

    Article  CAS  PubMed  Google Scholar 

  • Lieberthal W, Triaca V, Levine J (1996) Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol Renal Physiol 270:F700–F708

    CAS  Google Scholar 

  • Lieberthal W, Koh JS, Levine JS (1998) Necrosis and apoptosis in acute renal failure. Semin Nephrol 18:505–518

    CAS  PubMed  Google Scholar 

  • Lockshin RA, Zakeri Z (2002) Caspase-independent cell deaths. Curr Opin Cell Biol 14:727–733

    Article  CAS  PubMed  Google Scholar 

  • Mandic A, Viktrosson K, Heiden T, Hansson J, Shoshan MC (2001a) The MEKK1 inhibitor PD98059 sensitizes C8161 melanoma cells to cisplatin-induced apoptosis. Melanoma Res 11:11–19

    CAS  PubMed  Google Scholar 

  • Mandic A, Viktorsson K, Molin M, Akusjarvi G, Eguchi H, Hayashi SI, Toi M, Hansson J, Linder S, Shoshan MC (2001b) Cisplatin induces the proapototic conformation of Bak in a ΔMEKK1-dependent manner. Mol Cell Biol 21:3684–3691

    Article  CAS  PubMed  Google Scholar 

  • Mathiasen IS, Jäättelä M (2002) Triggering caspase-independent cell death to combat cancer. Trends Mol Med 8:212–220

    Article  CAS  PubMed  Google Scholar 

  • Mese H, Sasaki A, Nakayama S, Alcade RE, Matsumura T (2000) The role of caspase family of proteas, caspase-3 on cisplatin-induced apoptosis in cisplatin-resistant A431 cell line. Cancer Chemother Pharmacol 46:241–245

    Article  CAS  PubMed  Google Scholar 

  • Miyaji T, Kato A, Yasuda H, Yasuda H, Fujigaki Y, Hishida A (2001) Role of increase in p21 in cisplatin-induced acute renal failure in rats. J Am Soc Nephrol 12:900–908

    CAS  PubMed  Google Scholar 

  • Moriguchi T, Kawasaki H, Matsuda S, Gotoh Y, Nishida E (1995) Evidence for multiple activators for stress-activated protein kinases/c-Jun amino-terminal kinases. Existence of novel activators. J Biol Chem 270:12969–12972

    Article  CAS  PubMed  Google Scholar 

  • Park SA, Park HJ, Lee BI, Ahn YH, Kim SU, Choi KS (2001) Bcl-2, blocks cisplatin-induced apoptosis by suppression of ERK-mediated p53 accumulation in B104 cells. Brain Res Mol Brain Res 93:18–26

    CAS  PubMed  Google Scholar 

  • Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    CAS  PubMed  Google Scholar 

  • Pombo CM, Bonventre JV, Avruch J, Woodgett JR, Kyriakis JM, Force T (1994) The stress activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J Biol Chem 269:26546–26551

    CAS  PubMed  Google Scholar 

  • Ramesh G, Reeves WB (2003) TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol 285:F610–F618

    PubMed  Google Scholar 

  • Razzaque MS, Koji T, Kumatori A, Taguchi T (1999) Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system. Histochem Cell Biol 111:359–365

    Article  CAS  PubMed  Google Scholar 

  • Safirstein R, Deray G (1998) Anticancer: cisplatin/carboplatin. In: DeBroe ME, Porter GA, Bennett WM, Verpooten GA (eds) Clinical nephrotoxins. Renal injury from drugs and chemicals. Kluwer Academic, Dordrecht, pp 261–271

  • Safirstein R, Winston J, Goldstein M, Moel D, Dikman S, Guttenplan J (1986) Cisplatin-nephrotoxicity. Am J Kidney Dis 8:356–367

    CAS  PubMed  Google Scholar 

  • Safirstein R, Winston J, Moel D, Dikman S, Guttenplan J (1987) Cisplatin nephrotoxicity: insights into mechanism. Int J Androl 10:325–346

    CAS  PubMed  Google Scholar 

  • Sanchez-Perez I, Martinez-Gomariz M, Williams D, Keyse SM, Perona R (2000) CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene 19:5142–5252

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Kobayashi M, Shirato I, Osaki T, Endou H (1997) Cisplatin-induced apoptosis of immortalized mouse proximal tubule cells is mediated by interleukin-1β converting enzyme (ICE) family of proteases but inhibited by overexpression of Bcl-2. Arch Toxicol 71:612–621

    Article  CAS  PubMed  Google Scholar 

  • Tsuruya K, Ninomiya T, Tokumoto M, Hirakawa M, Masutani K, Taniguchi M, Fukuda K, Kanai H, Kishihara K, Hirkata H, Iida M (2003a) Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int 63:72–82

    Article  CAS  PubMed  Google Scholar 

  • Tsuruya K, Tokumotot M, Ninomiya T, Hirakawa M, Masutani M, Taniguchi M, Fukuda K, Kanai H, Hirakata H, Iida (2003b) Antioxidant meliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am J Physiol Renal Physiol 285:F208–F218

    CAS  PubMed  Google Scholar 

  • Ueda N, Shah SV (2000) Tubular cell damage in acute renal failure—apoptosis, necrosis, or both. Nephrol Dial Transplant 15:318–323

    Article  CAS  PubMed  Google Scholar 

  • Ueda N, Kaushal GP, Shah SV (1997) Recent advances in understanding mechanisms of renal tubular injury. Adv Ren Replace Ther 4:17–24

    CAS  PubMed  Google Scholar 

  • Wang X, Martindale JL, Holbrook NJ (2000) Requirement of ERK activation in cisplatin-induced apoptosis. J Biol Chem 275:39435–39443

    CAS  PubMed  Google Scholar 

  • Widmann C, Johnson NL, Gardner AM, Smith RJ, Johnson GL (1997) Potentiation of apoptosis by low dose stress response stimuli in cells expressing activated MEK kinase 1. Oncogene 15:2439–2447

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of Bax in the apoptotic response to anticancer agents. Science 290:989–992

    Google Scholar 

  • Zhou H, Miyaji T, Kato A, Fujigaki Y, Sano K, Hishida A (1999) Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death. J Lab Clin Med 134:649–658

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by funds from the US National Institutes of Health (R01 DK-53452 to ARB), the University of Cincinnati, Cincinnati, Ohio (WC), Dialysis Clinic Incorporated, Cincinnati, Ohio (BKK), and the University of Utah Health Sciences Center, Salt Lake City, Utah (BKK). This material is the result of work supported in part with resources and the use of facilities at the Veterans Administration Salt Lake City Health Care System, Salt Lake City, Utah (BKK). The authors thank Darren DiIulio, Nithya Krishnan, and Yu Yang for their technical assistance, and Drs. Christof Westenfelder and Donald Kohan for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bellamkonda K. Kishore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikh-Hamad, D., Cacini, W., Buckley, A.R. et al. Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch Toxicol 78, 147–155 (2004). https://doi.org/10.1007/s00204-003-0521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-003-0521-4

Keywords

Navigation