Skip to main content

Advertisement

Log in

Leukocyte infiltrate in gastrointestinal adenocarcinomas is strongly associated with tumor microsatellite instability but not with tumor immunogenicity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose

To analyze the correlation of genomic instability with leukocyte infiltrate in gastrointestinal carcinomas (GIACs) and with tumor immunogenicity, e.g., HLA class I cell surface expression defects and galectin-3 and PDL-1 expression.

Experimental design

Lymphocyte and macrophage infiltrations were immunohistochemically studied in HLA class I negative GIACs with sporadic high-level microsatellite instability (MSI-H) or microsatellite stability (MSS).

Results

Tumors with MSI-H were associated with the following: dense infiltration (CD45, P < 0.001); cytotoxic CD8-positive lymphocytes (P < 0.001); and a complete absence of HLA class I cell surface expression, due to inactivating β2-microglobulin (β2-m) mutation in 50% of cases. In contrast, HLA class I negative tumors with MSS were significantly associated with fewer CD8-positive lymphocytes. There was no association between microsatellite instability and other molecular features of the tumor cells, including expression of galectin-3. Finally, macrophage infiltrate in the tumors was not correlated with microsatellite instability or HLA class I cell surface expression (CD64, P = 0.63; CD163, P = 0.51).

Conclusions

Microsatellite instability appears to be the most important factor determining the composition, density, and localization of leukocyte infiltrate, which is independent of other molecular features such expression of HLA class I cells, galectin-3, or programmed death ligand-1. Accordingly, the strong intratumoral CD8+ T infiltration of MSI-H tumors may be produced by elevated levels of specific inflammatory chemokines in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APM:

Antigen processing machinery

CRC:

Colorectal cancer

GIAC:

Gastrointestinal adenocarcinoma

HLA:

Human leukocyte antigen

LOH:

Loss of heterozygosity

MHC:

Major histocompatibility complex

MMR:

Mismatch repair

MSI:

Microsatellite instability

MSI-H:

High microsatellite instability, MSS, microsatellite stability

References

  1. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  PubMed  CAS  Google Scholar 

  2. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  PubMed  CAS  Google Scholar 

  3. Bui JD, Schreiber RD (2007) Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 19:203–208

    Article  PubMed  CAS  Google Scholar 

  4. Robbins PF, Kawakami Y (1996) Human tumor antigens recognized by T cells. Curr Opin Immunol 8:628–636

    Article  PubMed  CAS  Google Scholar 

  5. Boon T, Coulie PG, Van den Eynde BJ, Van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  PubMed  CAS  Google Scholar 

  6. Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439

    Article  PubMed  CAS  Google Scholar 

  7. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  Google Scholar 

  8. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  9. Perucho M (2003) Tumors with microsatellite instability: many mutations, targets and paradoxes. Oncogene 22:2223–2225

    Article  PubMed  CAS  Google Scholar 

  10. Dolcetti R, Viel A, Doglioni C, Russo A, Guidoboni M, Capozzi E, Vecchiato N, Macrì E, Fornasarig M, Boiocchi M (1999) High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol 154:1805–1813

    Article  PubMed  CAS  Google Scholar 

  11. Smyrk TC, Watson P, Kaul K, Lynch HT (2001) Tumor-infiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma. Cancer 91:2417–2422

    Article  PubMed  CAS  Google Scholar 

  12. Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P, von Knebel Doeberitz M (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer 93:6–11

    Article  PubMed  CAS  Google Scholar 

  13. Saeterdal I, Bjørheim J, Lislerud K, Gjertsen MK, Bukholm IK, Olsen OC, Nesland JM, Eriksen JA, Møller M, Lindblom A, Gaudernack G (2001) Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc Natl Acad Sci USA 98:13255–13260

    Article  PubMed  CAS  Google Scholar 

  14. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12:3–13

    Article  PubMed  CAS  Google Scholar 

  15. Peng W, Wang HY, Miyahara Y, Peng G, Wan RF (2008) Tumor-Associated Galectin-3 modulates the function of tumor-reactive T cells. Cancer Res 68:7228–7236

    Article  PubMed  CAS  Google Scholar 

  16. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  PubMed  CAS  Google Scholar 

  17. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263–274

    Article  PubMed  CAS  Google Scholar 

  18. Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267:204–215

    Article  PubMed  CAS  Google Scholar 

  19. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Galon J (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666

    Article  PubMed  Google Scholar 

  20. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  21. Allavena P, Sica A, Garlanda C, Mantovani A (2008) The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev 222:155–161

    Article  PubMed  CAS  Google Scholar 

  22. Sobin L, Gospodarowiaz M, Wittekind CH (2009) TNM classification of malignant tumours UICC, 7th edn. Wiley, Blackwell

    Google Scholar 

  23. López Nevot MA, Cabrera T, de la Higuera B, Ruiz-Cabello F, Ga-rrido F (1986) Obtención y caracterización de anticuerpos monoclonales frente a leucemias humanas. Inmunología 5:51–59

    Google Scholar 

  24. Stam NJ, Spits H, Ploegh HL (1986) Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 137:2299–2306

    PubMed  CAS  Google Scholar 

  25. Huelin C, Gonzalez M, Pedrinaci S, de la Higuera B, Piris MA, San Miguel J, Ruiz-Cabello F, Garrido F (1988) Distribution of the CD45R antigen in the maturation of lymphoid and myeloid seri-es.- The CD45R negative phenotype is a constant finding in T CD4 positive lympho-proliferative disor-ders. British J Haematol 69:173–179

    Article  CAS  Google Scholar 

  26. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  27. Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, von Knebel Doeberitz M (2005) Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 65:6418–6424

    Article  PubMed  CAS  Google Scholar 

  28. Maleno I, Cabrera CM, Cabrera T, Paco L, López-Nevot MA, Collado A, Ferrón A, Garrido F (2004) Distribution of HLA class I altered phenotypes in colorectal carcinomas: high frequency of HLA haplotype loss associated with loss of heterozygosity in chromosome region 6p21. Immunogenetics 56:244–253

    Article  PubMed  CAS  Google Scholar 

  29. Cabrera CM, Jiménez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F (2003) Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens 61:211–219

    Article  PubMed  CAS  Google Scholar 

  30. Dierssen JW, de Miranda NF, Ferrone S, van Puijenbroek M, Cornelisse CJ, Fleuren GJ, van Wezel T, Morreau H (2007) HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 7:33

    Article  PubMed  Google Scholar 

  31. Garrido F, Ruiz-Cabello F, Cabrera T et al (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  PubMed  CAS  Google Scholar 

  32. Marincola FM, Jaffee E, Hicklin D et al (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  PubMed  CAS  Google Scholar 

  33. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

    Article  PubMed  CAS  Google Scholar 

  34. D’Urso CM, Wang ZG, Cao Y, Tatake R, Zeff RA, Ferrone S (1991) Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. J Clin Invest 87:284–292

    Article  PubMed  Google Scholar 

  35. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88:100–108

    Article  PubMed  CAS  Google Scholar 

  36. Benitez R, Godelaine D, Lopez-Nevot MA, Brasseur F, Jiménez P, Marchand M, Oliva MR, van Baren N, Cabrera T, Andry G, Landry C, Ruiz-Cabello F et al (1998) Mutations of the beta2-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides. Tissue Antigens 52:520–529

    Article  PubMed  CAS  Google Scholar 

  37. Paschen A, Méndez RM, Jiménez P, Sucker A, Ruiz-Cabello F, Garrido F, Schadendorf D (2003) Complete loss of HLA class I antigen expression on melanoma cells: a result of successive mutational events. Int J Cancer 103:759–767

    Article  PubMed  CAS  Google Scholar 

  38. Seliger B, Hohne A, Knuth A, Bernhard H, Ehring B, Tampe R, Huber C (1996) Reduced membrane major histocompatibility complex class I density and stability in a subset of human renal cell carcinomas with low TAP and LMP expression. Clin Cancer Res 2:1427–1433

    PubMed  CAS  Google Scholar 

  39. Ye Q, Shen Y, Wang X, Yang J, Miao F, Shen C, Zhang J (2010) Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens 75:30–39

    Article  PubMed  CAS  Google Scholar 

  40. Kloor M, Michel S, Buckowitz B, Rüschoff J, Büttner R, Holinski-Feder E, Dippold W, Wagner R, Tariverdian M, Benner A, Schwitalle Y, Kuchenbuch B et al (2007) Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer 121:454–458

    Article  PubMed  CAS  Google Scholar 

  41. Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, von Knebel Doeberitz M (2004) Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. Cancer Immun 4:14

    PubMed  Google Scholar 

  42. Kloor M, Michel S, von Knebel Doeberitz M (2010) Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer 127:1001–1010

    Article  PubMed  CAS  Google Scholar 

  43. Guidoboni M, Gafà R, Viel A, Doglioni C, Russo A, Santini A, Del Tin L, Macrí E, Lanza G, Boiocchi M, Dolcetti R (2001) Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favourable prognosis. Am J Pathol 159:297–304

    Article  PubMed  CAS  Google Scholar 

  44. Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S (2004) Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br J Surg 91:469–475

    Article  PubMed  CAS  Google Scholar 

  45. Banerjea A, Ahmed S, Hands RE, Huang F, Han X, Shaw PM, Feakins R, Bustin SA, Dorudi S (2004) Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity. Mol Cancer 3:21

    Article  PubMed  Google Scholar 

  46. Sandel MH, Speetjens FM, Menon AG, Albertsson PA, Basse PH, Hokland M, Nagelkerke JF, Tollenaar RA, van de Velde CJ, Kuppen PJ (2005) Natural killer cells infiltrating colorectal cancer and MHC class I expression. Mol Immunol 42:541–546

    Article  PubMed  CAS  Google Scholar 

  47. Cozar JM, Canton J, Tallada M, Concha A, Cabrera T, Garrido F, Ruiz-Cabello Osuna F (2005) Analysis of NK cells and chemokine receptors in tumor infiltrating CD4 T lymphocytes in human renal carcinomas. Cancer Immunol Immunother 54:858–866

    Article  PubMed  CAS  Google Scholar 

  48. Forssell J, Oberg A, Henriksson ML, Stenling R, Jung A, Palmqvist R (2007) High macrophage infiltration along the tumor front correlates with improved survival in colon cancer. Clin Cancer Res 13:1472–1479

    Article  PubMed  CAS  Google Scholar 

  49. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumor angiogenesis. Nat Rev Cancer 8:618–631

    Article  PubMed  CAS  Google Scholar 

  50. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  PubMed  CAS  Google Scholar 

  51. Nangia-Makker P, Balan V, Raz A (2008) Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron 1:43–51

    Article  PubMed  Google Scholar 

  52. Lahm H, Andre S, Hoeflich A et al (2001) Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J Cancer Res Clin Oncol 127:375–386

    Article  PubMed  CAS  Google Scholar 

  53. Lotan R, Matsushita Y, Ohannesian D et al (1991) Lactose binding lectin expression in human colorectal carcinomas. Relation to tumor progression. Carbohydr Res 213:47–57

    Article  PubMed  CAS  Google Scholar 

  54. Miyazaki J, Hokari R, Kato S et al (2002) Increased expression of galectin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep 9:1307–1312

    PubMed  CAS  Google Scholar 

  55. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    PubMed  CAS  Google Scholar 

  56. Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, Yang YP, Tien P, Wang FS (2010) PD-1 and PDL-1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. [Epub ahead of print] PubMed PMID: 20473887

  57. Muhlbauer M, Fleck M, Schutz C, Weiss T, Froh M, Blank C, Scholmerich J, Hellerbrand C (2006) PDL-1 is induced in hepatocytes by viral infection and by interferon-alpha and -gamma and mediates T cell apoptosis. J Hepatol 45:520–528

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Eva García, Antonia Moreno, Mª Dolores Gálvez and Inmaculada García for technical assistance. They also thank the Tumor-Tissue Biobank of Virgen de las Nieves University Hospital for providing samples. The study was partially supported by grants from the Fondo de Investigaciones Sanitarias (08/0528), Red Genómica del Cáncer (RETICRD 06/020), Consejería de Salud Junta de Andalucía, Proyecto de Investigación de Excelencia (CTS-3952, CVI-4740 and P06/-CTS-02200) and Plan Andaluz de Investigación (PAI, Group CTS- in Spain, and from the European Searchable Tumour Cell Line Database (ESTDAB) project, contract No. QLRI-CT-2001-01325 (http://www.ebi.ac.uk/estdab), from the European Network for the identification and validation of antigens and biomarkers in cancer and their application in clinical tumor immunology (ENACT) project (European community LSHC-CT-2004-503306) and from the Cancer Immunotherapy Project (European community OJ 2004/c158,18234).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ruiz-Cabello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal, M., Concha, A., Sáenz-López, P. et al. Leukocyte infiltrate in gastrointestinal adenocarcinomas is strongly associated with tumor microsatellite instability but not with tumor immunogenicity. Cancer Immunol Immunother 60, 869–882 (2011). https://doi.org/10.1007/s00262-011-0999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-0999-1

Keywords

Navigation