Skip to main content

Advertisement

Log in

Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

NF-E2-related factor 2 (Nrf2) is a key transcription regulator for cellular response to oxidative stress in normal cells. In cancer cells, development of chemoresistance is associated with the constitutive activation of the Nrf2-mediated antioxidant defense system. Here, we investigated the role of Nrf2 in terms of cervical cancer cell proliferation and drug resistance.

Method

To investigate whether cancer cells activate the Nrf2 system, we examined 40 surgical cervical cancer samples and 12 normal control tissues. Plasmids containing Nrf2-small hairpin RNA (shRNA) or non-targeting vector-control shRNA were transfected into CaSki cells. Using Western blots and RT-PCR assays, the expression levels of Nrf2 mediated-target genes were measured in CaSki cells stably expressing Nrf2-shRNA. To evaluate how the Nrf2 knockdown affected susceptibility to chemotherapeutic drugs, MTT and flow cytometry assays were done in vitro and confirmed by a mouse xenograft model in vivo.

Results

The Nrf2-dependent defensive system was likely fully activated in cervical tumor tissues. Genetic knockdown of endogenous Nrf2 caused a global decrease in expression of Nrf2-regulated genes. This decrease in expression levels enhanced chemotherapeutic drug-induced apoptotic death in CaSki cells with a reduced cellular glutathione level. Additionally, the combination of cisplatin treatment and Nrf2 knockdown significantly suppressed tumor growth in vivo.

Conclusion

Our findings provide evidence that the inhibition of Nrf2 activity by shRNA might be a promising therapeutic strategy to enhance the efficacy of anticancer drugs and thus can be applied further during the course of chemotherapy in the treatment of cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  2. Pectasides D, Kamposioras K, Papaxoinis G, Pectasides E (2008) Chemotherapy for recurrent cervical cancer. Cancer Treat Rev 34(7):603–613

    Article  PubMed  CAS  Google Scholar 

  3. Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38(4):769–789

    Article  PubMed  CAS  Google Scholar 

  4. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24(16):7130–7139

    Article  PubMed  CAS  Google Scholar 

  5. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953

    Article  PubMed  CAS  Google Scholar 

  6. Hayashi A, Suzuki H, Itoh K, Yamamoto M, Sugiyama Y (2003) Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein 1 in mouse embryo fibroblasts. Biochem Biophys Res Commun 310(3):824–829

    Article  PubMed  CAS  Google Scholar 

  7. Zhang P, Singh A, Yegnasubramanian S, Esopi D, Kombairaju P, Bodas M, Wu HL, Bova SG, Biswal S (2010) Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol Cancer Ther 9(2):336–346

    Article  PubMed  CAS  Google Scholar 

  8. Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA (2003) Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 63(4):1564–1573

    Article  PubMed  CAS  Google Scholar 

  9. Hayashi A, Suzuki H, Itoh K, Yamamoto M, Sugiyama Y (2003) Transcription factor Nrf2 is required for the constitutive and inducible expression of multidrug resistance-associated protein 1 in mouse embryo fibroblasts. Biochem Biophys Res Commun 310(3):824–829

    Article  PubMed  CAS  Google Scholar 

  10. Tew KD (1994) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54(16):4313–4320

    PubMed  CAS  Google Scholar 

  11. Wagner M, Cadetg P, Ruf R, Mazzucchelli L, Ferrari P, Redaelli CA (2003) Heme oxygenase-1 attenuates ischemia/reperfusion-induced apoptosis and improves survival in rat renal allografts. Kidney Int 63(4):1564–1573

    Article  PubMed  CAS  Google Scholar 

  12. Reddy NM, Kleeberger SR, Cho HY, Yamamoto M, Kensler TW, Biswal S, Reddy SP (2007) Deficiency in Nrf2-GSH signaling impairs type II cell growth and enhances sensitivity to oxidants. Am J Respir Cell Mol Biol 37(1):3–8

    Article  PubMed  CAS  Google Scholar 

  13. Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D, Lee YM, Ku SK, Jung Y, Kwak MK (2011) NRF2 blockade suppresses colon tumor angiogenesis by inhibiting Hypoxia-Induced Activation of HIF-1{alpha}. Cancer Res 71(6):2260–2275

    Article  PubMed  CAS  Google Scholar 

  14. Kwak MK, Kensler TW (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244(1):66–76

    Article  PubMed  CAS  Google Scholar 

  15. Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34(4):176–188

    Article  PubMed  CAS  Google Scholar 

  16. Homma S, Ishii Y, Morishima Y, Yamadori T, Matsuno Y, Haraguchi N, Kikuchi N, Satoh H, Sakamoto T, Hizawa N, Itoh K, Yamamoto M (2009) Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin Cancer Res 15(10):3423–3432

    Article  PubMed  CAS  Google Scholar 

  17. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68(19):7975–7984

    Article  PubMed  CAS  Google Scholar 

  18. Bracht K, Boubakari Grunert R, Bednarski PJ (2006) Correlations between the activities of 19 anti-tumor agents and the intracellular glutathione concentrations in a panel of 14 human cancer cell lines: comparisons with the National Cancer Institute data. Anticancer Drugs 17(1):41–51

    Article  PubMed  CAS  Google Scholar 

  19. Li W, Kong AN (2009) Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48(2):91–104

    Article  PubMed  CAS  Google Scholar 

  20. Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, Suzuki T, Kobayashi A, Yokota J, Sakiyama T, Shibata T, Yamamoto M, Hirohashi S (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68(5):1303–1309

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X, Song Y, Wu Y, Dong Y, Lai L, Zhang J, Lu B, Dai F, He L, Liu M, Yi Z (2011) Indirubin inhibits tumor growth by anti-tumor angiogenesis through blocking VEGFR2 mediated JAK/STAT3 signaling in endothelial cell. Int J Cancer (Epub ahead of print)

  22. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, Blackford A, Goodman SN, Bunz F, Watson WH, Gabrielson E, Feinstein E, Biswal S (2008) RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68(19):7975–7984

    Article  PubMed  CAS  Google Scholar 

  23. Cho JM, Manandhar S, Lee HR, Park HM, Kwak MK (2008) Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett 260(1–2):96–108

    Article  PubMed  CAS  Google Scholar 

  24. Jiang T, Chen N, Zhao F, Wang XJ, Kong B, Zheng W, Zhang DD (2010) High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res 70(13):5486–5496

    Article  PubMed  CAS  Google Scholar 

  25. Shim GS, Manandhar S, Shin DH, Kim TH, Kwak MK (2009) Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic Biol Med 47(11):1619–1631

    Article  PubMed  CAS  Google Scholar 

  26. Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, Wong PK, Zhang DD (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29(6):1235–1243

    Article  PubMed  CAS  Google Scholar 

  27. Shibata T, Saito S, Kokubu A, Suzuki T, Yamamoto M, Hirohashi S (2010) Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Cancer Res 70(22):9095–9105

    Article  PubMed  CAS  Google Scholar 

  28. Shibata T, Kokubu A, Gotoh M, Ojima H, Ohta T, Yamamoto M, Hirohashi S (2008) Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135 (4):1358-1368, 1368 e1351–1354

    Google Scholar 

  29. Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Biswal S (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3(10):e420

    Article  PubMed  Google Scholar 

  30. Hu L, Miao W, Loignon M, Kandouz M, Batist G (2010) Putative chemopreventive molecules can increase Nrf2-regulated cell defense in some human cancer cell lines, resulting in resistance to common cytotoxic therapies. Cancer Chemother Pharmacol 66(3):467–474

    Article  PubMed  CAS  Google Scholar 

  31. Mahaffey CM, Zhang H, Rinna A, Holland W, Mack PC, Forman HJ (2009) Multidrug-resistant protein-3 gene regulation by the transcription factor Nrf2 in human bronchial epithelial and non-small-cell lung carcinoma. Free Radic Biol Med 46(12):1650–1657

    Article  PubMed  CAS  Google Scholar 

  32. Tang X, Wang H, Fan L, Wu X, Xin A, Ren H, Wang XJ (2011) Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med 50(11):1599–1609

    Article  PubMed  CAS  Google Scholar 

  33. Lee S, Suk K (2007) Heme oxygenase-1 mediates cytoprotective effects of immunostimulation in microglia. Biochem Pharmacol 74(5):723–729

    Article  PubMed  CAS  Google Scholar 

  34. Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B, Autschbach F, Meuer S, Buchler MW, Friess H (2005) Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11(10):3790–3798

    Article  PubMed  CAS  Google Scholar 

  35. Kweon MH, Adhami VM, Lee JS, Mukhtar H (2006) Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem 281(44):33761–33772

    Article  PubMed  CAS  Google Scholar 

  36. Nuhn P, Kunzli BM, Hennig R, Mitkus T, Ramanauskas T, Nobiling R, Meuer SC, Friess H, Berberat PO (2009) Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo. Mol Cancer 8:37

    Article  PubMed  Google Scholar 

  37. Kim HR, Kim S, Kim EJ, Park JH, Yang SH, Jeong ET, Park C, Youn MJ, So HS, Park R (2008) Suppression of Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung cancer A549 cells toward cisplatin. Lung Cancer 60(1):47–56

    Article  PubMed  Google Scholar 

  38. Li LS, Bey EA, Dong Y, Meng J, Patra B, Yan J, Xie XJ, Brekken RA, Barnett CC, Bornmann WG, Gao J, Boothman DA (2011) Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of beta-lapachone for pancreatic cancer therapy. Clin Cancer Res 17(2):275–285

    Article  PubMed  CAS  Google Scholar 

  39. Reigan P, Colucci MA, Siegel D, Chilloux A, Moody CJ, Ross D (2007) Development of indolequinone mechanism-based inhibitors of NAD(P)H:quinone oxidoreductase 1 (NQO1): NQO1 inhibition and growth inhibitory activity in human pancreatic MIA PaCa-2 cancer cells. Biochemistry 46(20):5941–5950

    Article  PubMed  CAS  Google Scholar 

  40. Dehn DL, Siegel D, Zafar KS, Reigan P, Swann E, Moody CJ, Ross D (2006) 5-Methoxy-1, 2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4, 7-dione, a mechanism -based inhibitor of NAD(P)H:quinone oxidoreductase 1, exhibits activity against human pancreatic cancer in vitro and in vivo. Mol Cancer Ther 5(7):1702–1709

    Article  PubMed  CAS  Google Scholar 

  41. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320

    Article  PubMed  CAS  Google Scholar 

  42. Pourahmad J, Hosseini MJ, Eskandari MR, Shekarabi SM, Daraei B (2010) Mitochondrial/lysosomal toxic cross-talk plays a key role in cisplatin nephrotoxicity. Xenobiotica 40(11):763–771

    Article  PubMed  CAS  Google Scholar 

  43. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22(47):7265–7279

    Article  PubMed  CAS  Google Scholar 

  44. Wang Q, Zheng XL, Yang L, Shi F, Gao LB, Zhong YJ, Sun H, He F, Lin Y, Wang X (2010) Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. J Exp Clin Cancer Res 29:159

    Article  PubMed  CAS  Google Scholar 

  45. Higgins LG, Hayes JD (2010) The cap’n’collar transcription factor Nrf2 mediates both intrinsic resistance to environmental stressors and an adaptive response elicited by chemopreventive agents that determines susceptibility to electrophilic xenobiotics. Chem Biol Interact 192(1–2):37–45

    PubMed  Google Scholar 

  46. Zhang K, Yang EB, Wong KP, Mack P (1999) GSH, GSH-related enzymes and GS-X pump in relation to sensitivity of human tumor cell lines to chlorambucil and adriamycin. Int J Oncol 14(5):861–867

    PubMed  CAS  Google Scholar 

  47. Yang P, Ebbert JO, Sun Z, Weinshilboum RM (2006) Role of the glutathione metabolic pathway in lung cancer treatment and prognosis: a review. J Clin Oncol 24(11):1761–1769

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (NSFC 50577067). The funding sources had input into the design of this study, the collection, analysis and interpretation of data.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biliang Chen.

Additional information

Xiangdong Ma and Jianfang Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Zhang, J., Liu, S. et al. Nrf2 knockdown by shRNA inhibits tumor growth and increases efficacy of chemotherapy in cervical cancer. Cancer Chemother Pharmacol 69, 485–494 (2012). https://doi.org/10.1007/s00280-011-1722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1722-9

Keywords

Navigation