Skip to main content

Advertisement

Log in

Celecoxib enhances radiosensitivity in medulloblastoma-derived CD133-positive cells

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objects

Cyclooxygenase-2 (COX-2), the enzyme that converts arachidonic acid to prostaglandins, is overexpressed in a variety of tumors, including medulloblastoma (MB). CD133, a transmembrane glycoprotein, has been suggested as a marker for cancer stem cells in brain tumors. The aim of the present study was to investigate the role of celecoxib, a selective COX-2 inhibitor, in enhancing the effects of ionizing radiotherapy (IR) on medulloblastoma-derived CD133-positive cells (MB-CD133+).

Materials and methods

MB-CD133+ were isolated from two medulloblastoma cell lines (Daoy and UW228). Then, they were treated with celecoxib in different concentrations, and cell viability was assessed. The assays of cell survival, soft agar, radiosensitivity, colony formation, and apoptotic activity in MB-CD133+ treated with celecoxib alone, radiation alone, or celecoxib combined with radiation were further evaluated.

Results

MB-CD133+ showed the self-renew ability to form sphere bodies in vitro and regenerate tumors in vivo. The levels of COX-2 mRNA and protein in MB-CD133+ were significantly higher than those in MB-CD133. The treatment of 30 μM celecoxib could effectively inhibit the abilities of cell proliferation and colony formation and increase IR-induced apoptosis in treated MB-CD133+. Furthermore, in vivo study demonstrated that celecoxib significantly enhanced radiosensitivity in MB-CD133+-transplanted grafts. Notably, xenotransplantation analysis demonstrated that the treatment of celecoxib could further suppress the expressions of angiogenic and stemnness-related genes in treated MB-CD133+ grafts of SCID mice.

Conclusions

Celecoxib presents the potential of radiosensitizing effect in MB-derived cancer stem cells. Therefore, it should be warranted in future trials to enhance the radiotherapeutic effects in MB patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Antonarakis E, Heath E, Walczak J, Nelson W, Fedor H, De Marzo A, Zahurak M, Piantadosi S, Dannenberg A, Gurganus R (2009) Phase II, randomized. Placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. J Clin Oncol 27:4986

    Article  CAS  PubMed  Google Scholar 

  2. Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A, Dewhirst M, Bigner D, Rich J (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  3. Baryawno N, Sveinbjornsson B, Eksborg S, Orrego A, Segerstrom L, Oqvist C, Holm S, Gustavsson B, Kagedal B, Kogner P (2008) Tumor-growth-promoting cyclooxygenase-2 prostaglandin E2 pathway provides medulloblastoma therapeutic targets. Neuro-oncology 10:661

    Article  CAS  PubMed  Google Scholar 

  4. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner P, Aigner L, Brawanski A, Bogdahn U, Beier C (2007) CD133+ and CD133-glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010

    Article  CAS  PubMed  Google Scholar 

  5. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  6. Cervoni L, Cantore G (1995) Medulloblastoma in pediatric age: a single-institution review of prognostic factors. Childs Nerv Syst 11:80–84, discussion 85

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Chen Y, SU Y, Tseng S (2007) Celecoxib increased expression of 14-3-3U and induced apoptosis of glioma cells. Anticancer Res 27:2547

    CAS  PubMed  Google Scholar 

  8. Chen Y, Hsu H, Chen Y, Tsai T, How C, Wang C, Hung S, Chang Y, Tsai M, Lee Y (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 3:e2637

    Article  PubMed  Google Scholar 

  9. Chiou S, Kao C, Lin H, Tseng W, Liu R, Chung C, Ku H, Lin C, Wong T (2006) Monitoring the growth effect of xenotransplanted human medulloblastoma in an immunocompromised mouse model using in vitro and ex vivo green fluorescent protein imaging. Childs Nerv Syst 22:475–480

    Article  PubMed  Google Scholar 

  10. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    Article  CAS  PubMed  Google Scholar 

  11. Collins A, Berry P, Hyde C, Stower M, Maitland N (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946

    Article  CAS  PubMed  Google Scholar 

  12. Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K (2001) Cyclo-oxygenase 2: a pharmacological target for the prevention of cancer. Lancet Oncol 2:544–551

    Article  CAS  PubMed  Google Scholar 

  13. Debucquoy A, Devos E, Vermaelen P, Landuyt W, De Weer S, Van Den Heuvel F, Haustermans K (2009) 18F-FLT and 18F-FDG PET to measure response to radiotherapy combined with celecoxib in two colorectal xenograft models. Int J Radiat Biol 85:763–771

    Article  CAS  PubMed  Google Scholar 

  14. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2007) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  Google Scholar 

  15. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011

    Article  CAS  PubMed  Google Scholar 

  16. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A, Corte G (2009) SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27:40–48

    Article  CAS  PubMed  Google Scholar 

  17. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377–386

    Article  CAS  PubMed  Google Scholar 

  18. Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. FASEB J 15:2742–2744

    CAS  PubMed  Google Scholar 

  19. Grosch S, Maier T, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. JNCI J Natl Cancer Inst 98:736

    Article  Google Scholar 

  20. Habrand JL, De Crevoisier R (2001) Radiation therapy in the management of childhood brain tumors. Childs Nerv Syst 17:121–133

    Article  CAS  PubMed  Google Scholar 

  21. Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448

    Article  CAS  PubMed  Google Scholar 

  22. Hoppe-Hirsch E, Brunet L, Laroussinie F, Cinalli G, Pierre-Kahn A, Renier D, Sainte-Rose C, Hirsch JF (1995) Intellectual outcome in children with malignant tumors of the posterior fossa: influence of the field of irradiation and quality of surgery. Childs Nerv Syst 11:345, discussion 345–346

    Article  Google Scholar 

  23. Kang K, Wang T, Woon C, Cheah E, Moore X, Zhu C, Wong M (2007) Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: inhibition of tumor angiogenesis with extensive tumor necrosis. Int J Radiat Oncol Biol Phys 67:888–896

    CAS  PubMed  Google Scholar 

  24. Kao C, Chiou S, Chen Y, Singh S, Lin H, Liu R, Lo C, Yang C, Chi C, Lee C (2005) Increased expression of osteopontin gene in atypical teratoid/rhabdoid tumor of the central nervous system. Mod Pathol 18:769–778

    Article  CAS  PubMed  Google Scholar 

  25. Kawamori T, Rao C, Seibert K, Reddy B (1998) Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 58:409

    CAS  PubMed  Google Scholar 

  26. Kesari S, Schiff D, Henson J, Muzikansky A, Gigas D, Doherty L, Batchelor T, Longtine J, Ligon K, Weaver S (2008) Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro-oncology 10:300

    Article  CAS  PubMed  Google Scholar 

  27. Kuipers G, Slotman B, Wedekind L, Stoter T, van den Berg J, Sminia P, Lafleur M (2007) Radiosensitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int J Radiat Biol 83:677–685

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Yao S, Kirschenbaum A, Levine A (1998) NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res 58:4245

    CAS  PubMed  Google Scholar 

  29. Lu K, Chen Y, Tsai P, Tsai M, Lee Y, Chiang C, Kao C, Chiou S, Ku H, Lin C (2009) Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Childs Nerv Syst 25:543–550

    Article  PubMed  Google Scholar 

  30. Mantovani G, Maccio A, Madeddu C, Gramignano G, Lusso M, Serpe R, Massa E, Astara G, Deiana L (2006) A phase II study with antioxidants, both in the diet and supplemented, pharmaconutritional support, progestagen, and anti-cyclooxygenase-2 showing efficacy and safety in patients with cancer-related anorexia/cachexia and oxidative stress. Cancer Epidemiol Biomark Prev 15:1030

    Article  CAS  Google Scholar 

  31. Masferrer J, Leahy K, Koki A, Zweifel B, Settle S, Woerner B, Edwards D, Flickinger A, Moore R, Seibert K (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60:1306

    CAS  PubMed  Google Scholar 

  32. McAdam B, Catella-Lawson F, Mardini I, Kapoor S, Lawson J, FitzGerald G (1999) Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA 96:272

    Article  CAS  PubMed  Google Scholar 

  33. Milas L (2003) Cyclooxygenase-2 (COX-2) enzyme inhibitors and radiotherapy: preclinical basis. Am J Clin Oncol 26:S66

    PubMed  Google Scholar 

  34. Mutter R, Lu B, Carbone D, Csiki I, Moretti L, Johnson D, Morrow J, Sandler A, Shyr Y, Ye F (2009) A phase II study of celecoxib in combination with paclitaxel, carboplatin, and radiotherapy for patients with inoperable stage IIIA/B non-small cell lung cancer. Clin Cancer Res 15:2158

    Article  CAS  PubMed  Google Scholar 

  35. O’Brien C, Pollett A, Gallinger S, Dick J (2006) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  36. Pakos E, Ioannidis J (2004) Radiotherapy vs. nonsteroidal anti-inflammatory drugs for the prevention of heterotopic ossification after major hip procedures: a meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys 60:888–895

    CAS  PubMed  Google Scholar 

  37. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang D (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Res 65:6207

    Article  CAS  PubMed  Google Scholar 

  38. Pawlik T, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59:928–942

    Article  PubMed  Google Scholar 

  39. Pawlik T, Keyomarsi K (2004) Colon carcinoma radiosensitivity and cell cycle arrest is dependent on both p53/p21 status and radiation dose. Proc Am Assoc Cancer Res 2004:310

    Google Scholar 

  40. Prince M, Sivanandan R, Kaczorowski A, Wolf G, Kaplan M, Dalerba P, Weissman I, Clarke M, Ailles L (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci 104:973

    Article  CAS  PubMed  Google Scholar 

  41. Singh S, Clarke I, Terasaki M, Bonn V, Hawkins C, Squire J, Dirks P (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821

    CAS  PubMed  Google Scholar 

  42. Singh S, Hawkins C, Clarke I, Squire J, Bayani J, Hide T, Henkelman R, Cusimano M, Dirks P (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  CAS  PubMed  Google Scholar 

  43. Sutter R, Shakhova O, Bhagat H, Behesti H, Sutter C, Penkar S, Santuccione A, Bernays R, Heppner FL, Schuller U, Grotzer M, Moch H, Schraml P, Marino S (2010) Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene 29:1845–1856

    Article  CAS  PubMed  Google Scholar 

  44. Vescovi A, Galli R, Reynolds B (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436

    Article  CAS  PubMed  Google Scholar 

  45. Whelan HT, Krouwer HG, Schmidt MH, Reichert KW, Kovnar EH (1998) Current therapy and new perspectives in the treatment of medulloblastoma. Pediatr Neurol 18:103–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by research grants from the National Science Council (NSC-98-3111-B-075-001-MY3), Chi Mei Medical Center (CMYM 9801), Taipei Veterans General Hospital (V97E1-008, V97F-001), Yen-Tjing-Ling Medical Foundation (95/96/97/98), Taipei City Hospital (96001-62-014, 96001-62-018, 96002-62-092, and 97001-62-003) and National Yang-Ming University (Ministry of Education, Aim for the Top University Plan), and Technology Development Program for Academia (98-EC-17-A-19-S2-0107), Department of Industrial Technology, Ministry of Economic Affairs, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shih-Hwa Chiou, Kai-Hsi Lu or Yi-Wei Chen.

Additional information

Kuan-Hsuan Chen, Chuan-Chih Hsu, and Wen-Shin Song contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, KH., Hsu, CC., Song, WS. et al. Celecoxib enhances radiosensitivity in medulloblastoma-derived CD133-positive cells. Childs Nerv Syst 26, 1605–1612 (2010). https://doi.org/10.1007/s00381-010-1190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1190-2

Keywords

Navigation