Skip to main content

Advertisement

Log in

Malignant fibrous histiocytoma—pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 07 March 2009

Abstract

Purpose

The new classification of malignant fibrous histiocytoma leaves only a small group of tumors without further line of differentiation, so-called pleomorphic sarcomas, not otherwise specified (NOS) as a pseudo-entity. This study focused on these tumors and analyzed the association of gene expression profiles to clinical outcome.

Materials and methods

Ten fresh samples of pleomorphic NOS sarcomas were evaluated histopathologically and by means of microarray analysis. Analysis of expression profiles was performed by clustering methods as well as by statistical analysis of primary vs recurrent tumors, irradiated vs nonirradiated tumors, tumors of patients above and below 60 years of age, male and female, and of tumors that developed metastatic or recurrent disease during the clinical course and those that did not.

Results

Tumor clustering did not correlate to any histopathological or clinical finding. Detailed gene expression analysis showed a variety of genes whose upregulation (platelet-derived growth factor receptor alpha polypeptide, solute carrier family 39 member 14, solute carrier family 2 member 3, pleiotrophin, trophinin, pleckstrin and Sec7 domain containing 3, enolase 2, biglycan, SH3 and cysteine-rich domain, matrix metalloproteinases 16) and whose downregulation (tissue inhibitor of metalloproteinase 4, hairy/enhancer of split related with YRPW motif 2, protein tyrosine phosphatase receptor-type Z polypeptide 1, SH3 domain GRB2-like 2, microtubule-associated protein 7, potassium voltage-gated channel shaker-related subfamily member 1, RUN and FYVE domain containing 3, Sin3A-associated protein 18 kDa, proline-rich 4, calcium/calmodulin-dependent protein kinase ID, myeloid/lymphoid or mixed-lineage leukemia translocated to 3, insulin-like growth factor binding protein 5, nucleoside diphosphate-linked moiety X-type motif 9, NudC domain containing 3, imprinted in Prader–Willi syndrome, TAF6-like RNA polymerase II p300/CBP-associated factor 65 kDa, WD repeat and SOCS box-containing 2, adenosine diphosphate ribosylation factor 3, KRR1, proliferation-associated 2G4; CD36, complement component (3b/4b) receptor 1, solute carrier family 4 sodium bicarbonate cotransporter member 4, lipoprotein lipase (LPL), GATA binding protein 3, LPL, glutathione peroxidase 3, d-aspartate oxidase, apolipoprotein E, sphingomyelin phosphodiesterase acid-like 3A) were associated with poor clinical outcome in terms of development of metastatic or recurrent disease.

Conclusions

The classification of these tumors may undergo further changes in the future. Gene expression profiling can provide additional information to categorize pleomorphic sarcoma (NOS) and reveal potential prognostic factors in this “entity.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Poremba C (2006) Soft tissue sarcomas: the role of histology and molecular pathology for differential diagnosis. Verh Dtsch Ges Pathol 90:59–72

    CAS  PubMed  Google Scholar 

  2. Lehnhardt M, Daigeler A, Homann HH et al (2008) MFH revisited: outcome after surgical treatment of undifferentiated pleomorphic or not otherwise specified (NOS) sarcomas of the extremities-an analysis of 140 patients. Langenbecks Arch Surg. doi:10.1007/s00423-008-0368-5

  3. Fletcher CD (1992) Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 16:213–228

    Article  CAS  PubMed  Google Scholar 

  4. Fletcher CD, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050

    CAS  PubMed  Google Scholar 

  5. Hollowood K, Fletcher CD (1995) Malignant fibrous histiocytoma: morphologic pattern or pathologic entity. Semin Diagn Pathol 12:210–220

    CAS  PubMed  Google Scholar 

  6. Massi D, Beltrami G, Capanna R et al (2004) Histopathological re-classification of extremity pleomorphic soft tissue sarcoma has clinical relevance. Eur J Surg Oncol 30:1131–1136. doi:10.1016/j.ejso.2004.07.018

    Article  CAS  PubMed  Google Scholar 

  7. Fletcher CD (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48:3–12. doi:10.1111/j.1365-2559.2005.02284.x

    Article  CAS  PubMed  Google Scholar 

  8. Randall RL, Albritton KH, Ferney BJ et al (2004) Malignant fibrous histiocytoma of soft tissue: an abandoned diagnosis. Am J Orthop 33:602–608. doi:10.1007/s00132-004-0667-7

    Article  PubMed  Google Scholar 

  9. Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759. doi:10.1038/modpathol.3800794

    Article  CAS  PubMed  Google Scholar 

  10. Lee YF, John M, Edwards S et al (2003) Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer 88:510–515. doi:10.1038/sj.bjc.6600766

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen TO, West RB, Linn SC et al (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307. doi:10.1016/S0140-6736(02)08270-3

    Article  CAS  PubMed  Google Scholar 

  12. Segal NH, Pavlidis P, Antonescu CR et al (2003) Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol 163:691–700

    CAS  PubMed  Google Scholar 

  13. Schofield D, Triche TJ (2002) cDNA microarray analysis of global gene expression in sarcomas. Curr Opin Oncol 14:406–411. doi:10.1097/00001622-200207000-00007

    Article  CAS  PubMed  Google Scholar 

  14. Backes C, Keller A, Kuentzer J et al (2007) GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res 35:W186–W192. doi:10.1093/nar/gkm323

    Article  PubMed  Google Scholar 

  15. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 6:1464–1465. doi:10.1093/bioinformatics/bth088

    Article  CAS  Google Scholar 

  16. Detwiller KY, Fernando NT, Segal NH et al (2005) Analysis of hypoxia-related gene expression in sarcomas and effect of hypoxia on RNA interference of vascular endothelial cell growth factor A. Cancer Res 65:5881–5889. doi:10.1158/0008-5472.CAN-04-4078

    Article  CAS  PubMed  Google Scholar 

  17. Yoon SS, Segal NH, Park PJ et al (2006) Angiogenic profile of soft tissue sarcomas based on analysis of circulating factors and microarray gene expression. J Surg Res 135:282–290. doi:10.1016/j.jss.2006.01.023

    Article  CAS  PubMed  Google Scholar 

  18. Weitz J, Antonescu CR, Brennan MF (2003) Localized extremity soft tissue sarcoma: improved knowledge with unchanged survival over time. J Clin Oncol 21:2719–2725. doi:10.1200/JCO.2003.02.026

    Article  PubMed  Google Scholar 

  19. Oda Y, Tamiya S, Oshiro Y et al (2002) Reassessment and clinicopathological prognostic factors of malignant fibrous histiocytoma of soft parts. Pathol Int 52:595–606. doi:10.1046/j.1440-1827.2002.01399.x

    Article  PubMed  Google Scholar 

  20. Matsumoto S, Ahmed AR, Kawaguchi N et al (2003) Results of surgery for malignant fibrous histiocytomas of soft tissue. Int J Clin Oncol 8:104–109. doi:10.1007/s101470300018

    Article  PubMed  Google Scholar 

  21. Belal A, Kandil A, Allam A et al (2002) Malignant fibrous histiocytoma: a retrospective study of 109 cases. Am J Clin Oncol 25:16–22. doi:10.1097/00000421-200202000-00003

    Article  PubMed  Google Scholar 

  22. Dei Tos A (2006) Classification of pleomorphic sarcoma: where are we now? Histopathology 48:51–62. doi:10.1111/j.1365-2559.2005.02289.x

    Article  CAS  PubMed  Google Scholar 

  23. Skubitz KM, D′Adamo DR (2007) Sarcoma. Mayo Clin Proc 82:1409–1432

    Article  CAS  PubMed  Google Scholar 

  24. Skubitz KM, Skubitz AP (2004) Role of gene expression arrays in sarcomas. Curr Oncol Rep 6:309–314. doi:10.1007/s11912-004-0041-2

    Article  PubMed  Google Scholar 

  25. Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235. doi:10.1158/0008-5472.CAN-05-1699

    Article  CAS  PubMed  Google Scholar 

  26. Nagayama S, Katagiri T, Tsunoda T et al (2002) Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res 62:5859–5866

    CAS  PubMed  Google Scholar 

  27. Lee YF, John M, Falconer A et al (2004) A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 64:7201–7204. doi:10.1158/0008-5472.CAN-04-1673

    Article  CAS  PubMed  Google Scholar 

  28. West RB, Harvell J, Linn SC et al (2004) Apo D in soft tissue tumors: a novel marker for dermatofibrosarcoma protuberans. Am J Surg Pathol 28:1063–1069. doi:10.1097/01.pas.0000126857.86186.4c

    Article  PubMed  Google Scholar 

  29. Schaefer KL, Brachwitz K, Wai DH et al (2004) Expression profiling of t(12;22) positive clear cell sarcoma of soft tissue cell lines reveals characteristic up-regulation of potential new marker genes including ERBB3. Cancer Res 64:3395–3405. doi:10.1158/0008-5472.CAN-03-0809

    Article  CAS  PubMed  Google Scholar 

  30. Skubitz KM, Cheng EY, Clohisy DR et al (2005) Differential gene expression in liposarcoma, lipoma, and adipose tissue. Cancer Invest 23:105–118. doi:10.1081/CNV-50432

    Article  CAS  PubMed  Google Scholar 

  31. Goransson M, Elias E, Stahlberg A et al (2005) Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-mediated interleukin 6 expression. Int J Cancer 115:556–560. doi:10.1002/ijc.20893

    Article  PubMed  CAS  Google Scholar 

  32. Fritz B, Schubert F, Wrobel G et al (2002) Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 62:2993–2998

    CAS  PubMed  Google Scholar 

  33. Italiano A, Cardot N, Dupre F et al (2007) Gains and complex rearrangements of the 12q13-15 chromosomal region in ordinary lipomas: the “missing link” between lipomas and liposarcomas? Int J Cancer 121:308–315. doi:10.1002/ijc.22685

    Article  CAS  PubMed  Google Scholar 

  34. Bassett MD, Schuetze SM, Disteche C et al (2005) Deep-seated, well differentiated lipomatous tumors of the chest wall and extremities: the role of cytogenetics in classification and prognostication. Cancer 103:409–416. doi:10.1002/cncr.20779

    Article  PubMed  Google Scholar 

  35. Meis-Kindblom JM, Sjogren H, Kindblom LG et al (2001) Cytogenetic and molecular genetic analyses of liposarcoma and its soft tissue simulators: recognition of new variants and differential diagnosis. Virchows Arch 439:141–151. doi:10.1007/s004280100423

    Article  CAS  PubMed  Google Scholar 

  36. Sandberg AA (2004) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: liposarcoma. Cancer Genet Cytogenet 155:1–24. doi:10.1016/j.cancergencyto.2004.08.005

    Article  CAS  PubMed  Google Scholar 

  37. Engstrom K, Willen H, Kabjorn-Gustafsson C et al (2006) The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol 168:1642–1653. doi:10.2353/ajpath.2006.050872

    Article  PubMed  CAS  Google Scholar 

  38. Szymanska J, Virolainen M, Tarkkanen M et al (1997) Overrepresentation of 1q21-23 and 12q13-21 in lipoma-like liposarcomas but not in benign lipomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 99:14–18. doi:10.1016/S0165-4608(96)00436-0

    Article  CAS  PubMed  Google Scholar 

  39. Fukukawa C, Nakamura Y, Katagiri T (2005) Molecular target therapy for synovial sarcoma. Future Oncol 1:805–812. doi:10.2217/14796694.1.6.805

    Article  CAS  PubMed  Google Scholar 

  40. Ishibe T, Nakayama T, Okamoto T et al (2005) Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clin Cancer Res 11:2702–2712. doi:10.1158/1078-0432.CCR-04-2057

    Article  CAS  PubMed  Google Scholar 

  41. Lubieniecka JM, Nielsen TO (2005) cDNA microarray-based translational research in soft tissue sarcoma. J Surg Oncol 92:267–271. doi:10.1002/jso.20409

    Article  PubMed  Google Scholar 

  42. Nagayama S, Fukukawa C, Katagiri T et al (2005) Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene 24:6201–6212. doi:10.1038/sj.onc.1208780

    Article  CAS  PubMed  Google Scholar 

  43. Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636. doi:10.1158/0008-5472.CAN-07-0584

    Article  CAS  PubMed  Google Scholar 

  44. Gazziola C, Cordani N, Wasserman B et al (2003) Malignant fibrous histiocytoma: a proposed cellular origin and identification of its characterizing gene transcripts. Int J Oncol 23:343–351

    CAS  PubMed  Google Scholar 

  45. Wang M, Liu YE, Greene J et al (1997) Inhibition of tumor growth and metastasis of human breast cancer cells transfected with tissue inhibitor of metalloproteinase 4. Oncogene 14:2767–2774. doi:10.1038/sj.onc.1201245

    Article  CAS  PubMed  Google Scholar 

  46. Alford SH, Vrana MS, Waite L et al (2007) Matrix metalloproteinase expression in high grade soft tissue sarcomas. Oncol Rep 18:1529–1536

    CAS  PubMed  Google Scholar 

  47. Roebuck MM, Helliwell TR, Chaudhry IH et al (2005) Matrix metalloproteinase expression is related to angiogenesis and histologic grade in spindle cell soft tissue neoplasms of the extremities. Am J Clin Pathol 123:405–414. doi:10.1309/LK1V7R99JL41WVKP

    Article  PubMed  Google Scholar 

  48. Partridge JJ, Madsen MA, Ardi VC et al (2007) Functional analysis of matrix metalloproteinases and tissue inhibitors of metalloproteinases differentially expressed by variants of human HT-1080 fibrosarcoma exhibiting high and low levels of intravasation and metastasis. J Biol Chem 282:35964–35977. doi:10.1074/jbc.M705993200

    Article  CAS  PubMed  Google Scholar 

  49. Sun BC, Sun Y, Zhao XL et al (2006) Correlation between matrix metalloproteinases-2 and tissue inhibitor of metalloproteinase-2 expression, metastatic potential and tumor angiogenesis in synovial sarcoma and its prognostic significance. Chung-hua Ping Li Hsueh Tsa Chih 35:155–158

    PubMed  Google Scholar 

  50. Wittmann S, Wunder C, Zirn B et al (2008) New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors. Genes Chromosomes Cancer 47:386–395. doi:10.1002/gcc.20544

    Article  CAS  PubMed  Google Scholar 

  51. Shang C, Fu WN, Guo Y et al (2007) Study of the SH3-domain GRB2-like 2 gene expression in laryngeal carcinoma. Chin Med J (Engl) 120:385–388

    CAS  Google Scholar 

  52. Li X, Cao X, Zhang W et al (2007) Expression level of insulin-like growth factor binding protein 5 mRNA is a prognostic factor for breast cancer. Cancer Sci 98:1592–1596. doi:10.1111/j.1349-7006.2007.00565.x

    Article  CAS  PubMed  Google Scholar 

  53. Wang H, Arun BK, Fuller GN et al (2008) IGFBP2 and IGFBP5 overexpression correlates with the lymph node metastasis in T1 breast carcinomas. Breast J 14:261–267. doi:10.1111/j.1524-4741.2008.00572.x

    Article  PubMed  Google Scholar 

  54. Hung PS, Kao SY, Shih YH et al (2008) Insulin-like growth factor binding protein-5 (IGFBP-5) suppresses the tumourigenesis of head and neck squamous cell carcinoma. J Pathol 214:368–376. doi:10.1002/path.2280

    Article  CAS  PubMed  Google Scholar 

  55. Umemura A, Itoh Y, Itoh K et al (2008) Association of gankyrin protein expression with early clinical stages and insulin-like growth factor-binding protein 5 expression in human hepatocellular carcinoma. Hepatology 47:493–502. doi:10.1002/hep.22027

    Article  CAS  PubMed  Google Scholar 

  56. Yu Y, Chen W, Zhang Y et al (2007) Suppression of salivary adenoid cystic carcinoma growth and metastasis by ErbB3 binding protein Ebp1 gene transfer. Int J Cancer 120:1909–1913. doi:10.1002/ijc.22541

    Article  CAS  PubMed  Google Scholar 

  57. Yamazaki H, Handa A, Nishi M et al (2004) Ribozyme mediated down-regulation of thrombospondin receptor CD36 inhibits the growth of the human osteosarcoma cell line. Oncol Rep 11:371–374

    CAS  PubMed  Google Scholar 

  58. Chen M, Pych E, Corpron C et al (2002) Regulation of CD36 expression in human melanoma cells. Adv Exp Med Biol 507:337–342

    CAS  PubMed  Google Scholar 

  59. Galeza-Kulik M, Zebracka J, Szpak-Ulczok S et al (2006) Expression of selected genes involved in transport of ions in papillary thyroid carcinoma. Endokrynol Pol 57:26–31

    PubMed  Google Scholar 

  60. Noguchi Y, Nomura K, Yoshikawa T et al (1996) Role of insulin resistance in decreasing lipoprotein lipase activity in tumor-bearing rats. Surg Today 26:271–275. doi:10.1007/BF00311587

    Article  CAS  PubMed  Google Scholar 

  61. Noguchi Y, Vydelingum NA, Younes RN et al (1991) Tumor-induced alterations in tissue lipoprotein lipase activity and mRNA levels. Cancer Res 51:863–869

    CAS  PubMed  Google Scholar 

  62. Sakayama K, Masuno H, Miyazaki T et al (1994) Existence of lipoprotein lipase in human sarcomas and carcinomas. Jpn J Cancer Res 85:515–521

    CAS  PubMed  Google Scholar 

  63. Yu YP, Yu G, Tseng G et al (2007) Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res 67:8043–8050. doi:10.1158/0008-5472.CAN-07-0648

    Article  CAS  PubMed  Google Scholar 

  64. Liestol K, Kvittingen EA, Rootwelt H et al (2000) Association between apolipoprotein E genotypes and cancer risk in patients with acquired immunodeficiency syndrome. Cancer Detect Prev 24:496–499

    CAS  PubMed  Google Scholar 

  65. Browning PJ, Roberts DD, Zabrenetzky V et al (1994) Apolipoprotein E (ApoE), a novel heparin-binding protein inhibits the development of Kaposi′s sarcoma-like lesions in BALB/c nu/nu mice. J Exp Med 180:1949–1954. doi:10.1084/jem.180.5.1949

    Article  CAS  PubMed  Google Scholar 

  66. Oue N, Hamai Y, Mitani Y et al (2004) Gene expression profile of gastric carcinoma: identification of genes and tags potentially involved in invasion, metastasis, and carcinogenesis by serial analysis of gene expression. Cancer Res 64:2397–2405. doi:10.1158/0008-5472.CAN-03-3514

    Article  CAS  PubMed  Google Scholar 

  67. Wright KO, Messing EM, Reeder JE (2002) Increased expression of the acid sphingomyelinase-like protein ASML3a in bladder tumors. J Urol 168:2645–2649. doi:10.1016/S0022-5347(05)64236-X

    Article  CAS  PubMed  Google Scholar 

  68. Agaimy A, Gaumann A, Schroeder J et al (2007) Primary and metastatic high-grade pleomorphic sarcoma/malignant fibrous histiocytoma of the gastrointestinal tract: an approach to the differential diagnosis in a series of five cases with emphasis on myofibroblastic differentiation. Virchows Arch 451:949–957. doi:10.1007/s00428-007-0495-3

    Article  PubMed  Google Scholar 

  69. Yamamoto T, Akisue T, Marui T et al (2003) Immunohistochemical analysis of platelet-derived growth factor and its receptors in soft tissue malignant fibrous histiocytoma. Anticancer Res 23:4325–4328

    CAS  PubMed  Google Scholar 

  70. Irsan I, Akisue T, Hara H et al (2007) Imatinib mesylate inhibits tumorigenicity of malignant fibrous histiocytoma cells in vivo. Anticancer Res 27:423–429

    CAS  PubMed  Google Scholar 

  71. Kawamoto T, Akisue T, Marui T et al (2004) Inhibitory effect of STI571 on cell proliferation of human malignant fibrous histiocytoma cell lines. Anticancer Res 24:2675–2679

    CAS  PubMed  Google Scholar 

  72. Ito S, Nemoto T, Satoh S et al (2000) Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1. Arch Biochem Biophys 373:72–82. doi:10.1006/abbi.1999.1535

    Article  CAS  PubMed  Google Scholar 

  73. Thomas DM, Maher F, Rogers SD et al (1996) Expression and regulation by insulin of GLUT 3 in UMR 106-01, a clonal rat osteosarcoma cell line. Biochem Biophys Res Commun 218:789–793. doi:10.1006/bbrc.1996.0140

    Article  CAS  PubMed  Google Scholar 

  74. Baer S, Casaubon L, Schwartz MR et al (2002) Glut3 expression in biopsy specimens of laryngeal carcinoma is associated with poor survival. Laryngoscope 112:393–396. doi:10.1097/00005537-200202000-00034

    Article  CAS  PubMed  Google Scholar 

  75. Walters DK, Steinmann P, Langsam B et al (2008) Identification of potential chemoresistance genes in osteosarcoma. Anticancer Res 28:673–679

    CAS  PubMed  Google Scholar 

  76. Wu H, Barusevicius A, Babb J et al (2005) Pleiotrophin expression correlates with melanocytic tumor progression and metastatic potential. J Cutan Pathol 32:125–130. doi:10.1111/j.0303-6987.2005.00282.x

    Article  CAS  PubMed  Google Scholar 

  77. Hatakeyama S, Ohyama C, Minagawa S et al (2004) Functional correlation of trophinin expression with the malignancy of testicular germ cell tumor. Cancer Res 64:4257–4262. doi:10.1158/0008-5472.CAN-04-0732

    Article  CAS  PubMed  Google Scholar 

  78. Harada O, Suga T, Suzuki T et al (2007) The role of trophinin, an adhesion molecule unique to human trophoblasts, in progression of colorectal cancer. Int J Cancer 121:1072–1078. doi:10.1002/ijc.22821

    Article  CAS  PubMed  Google Scholar 

  79. Chen KY, Lee YC, Lai JM et al (2007) Identification of trophinin as an enhancer for cell invasion and a prognostic factor for early stage lung cancer. Eur J Cancer 43:782–790. doi:10.1016/j.ejca.2006.09.029

    Article  CAS  PubMed  Google Scholar 

  80. Groth S, Schulze M, Kalthoff H et al (2005) Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase. J Biol Chem 280:33190–33199. doi:10.1074/jbc.M504249200

    Article  CAS  PubMed  Google Scholar 

  81. Valladares A, Hernandez NG, Gomez FS et al (2006) Genetic expression profiles and chromosomal alterations in sporadic breast cancer in Mexican women. Cancer Genet Cytogenet 170:147–151. doi:10.1016/j.cancergencyto.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  82. Leivo I, Jee KJ, Heikinheimo K et al (2005) Characterization of gene expression in major types of salivary gland carcinomas with epithelial differentiation. Cancer Genet Cytogenet 156:104–113. doi:10.1016/j.cancergencyto.2004.04.016

    Article  CAS  PubMed  Google Scholar 

  83. Sato H, Okada Y, Seiki M (1997) Membrane-type matrix metalloproteinases (MT-MMPs) in cell invasion. Thromb Haemost 78:497–500

    CAS  PubMed  Google Scholar 

  84. Gilles C, Polette M, Seiki M et al (1997) Implication of collagen type I-induced membrane-type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest 76:651–660

    CAS  PubMed  Google Scholar 

  85. Ohnishi Y, Tajima S, Ishibashi A (2001) Coordinate expression of membrane type-matrix metalloproteinases-2 and 3 (MT2-MMP and MT3-MMP) and matrix metalloproteinase-2 (MMP-2) in primary and metastatic melanoma cells. Eur J Dermatol 11:420–423

    CAS  PubMed  Google Scholar 

  86. Sun YN, Li Y (2004) Expression of mRNA for membrane-type 1, 2, and 3 matrix metalloproteinases in human laryngeal cancer. Chin Med Sci J 19:170–173

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Amanda Daigeler for her formal English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daigeler Adrien.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00423-009-0474-z

Electronic Supplementary Material

Below is the link to the electronic supplementary materials.

Table S1

Summary of the histopathological findings: MiB-1: mind-bomb homolog 1 (tumor proliferation marker); EMA: epithelial membrane antigen; nd: not done; sm: smooth muscle; − negative; +, ++, +++: positive. The order of the patients’ numbers corresponds to their position in hierarchical clustering. No correlation of that position with the parameter listed above can be detected (DOC 30.5KB)

Table S2

Summary of the gene expression differences between patients above 60 (age+) and below 60 (age−) years (DOC 41.0KB)

Table S3

Summary of pathways and GO categories that were significantly enriched for differentially expressed in the tumors of male and female patients (DOC 35.5KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adrien, D., Ludger, KH., Ingo, S. et al. Malignant fibrous histiocytoma—pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study. Langenbecks Arch Surg 395, 261–275 (2010). https://doi.org/10.1007/s00423-009-0465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-009-0465-0

Keywords

Navigation