Skip to main content

Advertisement

Log in

NDRG1 and CRK-I/II are regulators of endothelial cell migration under intermittent hypoxia

  • Original paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Intermittent Hypoxia (IH) that develops in neovascularized solid tumours has been described to positively influence the tumour growth by modulating the behaviour of cancer cells as well as of endothelial cells. However, the molecular mechanisms regulated by IH still remain poorly understood. In this work, the effects of IH were investigated on endothelial cells by a proteomic approach. Protein abundance variations were studied using fluorescent 2D-Differential in Gel Electrophoresis (2D-DIGE). Amongst the proteins of which the abundance varied under IH, NDRG1 and CRK-I/II were identified by mass spectrometry. These proteins have already been described to influence cancer cell migration as well as the angiogenic processes in solid tumours. Since an increase in endothelial cell migration under IH was evidenced in our previous work, the involvement of NDRG1 and CRK-I/II proteins in endothelial cell migration under IH was determined by silencing the expression of both proteins using siRNA. The results revealed that NDRG1 and CRK-I/II are indeed regulators of endothelial cell migration under intermittent hypoxia: silencing of CRK-I/II resulted in an increase in endothelial cell migration, whereas the invalidation of NDRG1 decreased it. These results give news insight regarding the effects of IH on endothelial cell migration and hence on neoangiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Toffoli S, Michiels C (2008) Intermittent hypoxia is a key regulator of cancer cell, endothelial cell interplay in tumours. Febs J 275:2991–3002

    Article  CAS  PubMed  Google Scholar 

  2. Dewhirst MW (2007) Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting. Cancer Res 67:854–855

    Article  CAS  PubMed  Google Scholar 

  3. Yamaura H, Matsuzawa T (1979) Tumor regrowth after irradiation; an experimental approach. Int J Radiat Biol Relat Stud Phys Chem Med 35:201–219

    Article  CAS  PubMed  Google Scholar 

  4. Martinive P, Defresne F, Bouzin C, Saliez J, Lair F, Gregoire V, Michiels C, Dessy C, Feron O (2006) Preconditioning of the tumor vasculature, tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Res 66:11736–11744

    Article  CAS  PubMed  Google Scholar 

  5. Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903–8908

    CAS  PubMed  Google Scholar 

  6. Toffoli S, Roegiers A, Feron O, Van Steenbrugge M, Ninane N, Raes M, Michiels C (2009) Intermittent hypoxia is an angiogenic inducer for endothelial cells: role of HIF-1. Angiogenesis 12:47–67

    Google Scholar 

  7. Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR (2008) Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol 164:277–281

    Article  CAS  PubMed  Google Scholar 

  8. Freeman WM, Hemby SE (2004) Proteomics for protein expression profiling in neuroscience. Neurochem Res 29:1065–1081

    Article  CAS  PubMed  Google Scholar 

  9. Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734–3737

    Article  CAS  PubMed  Google Scholar 

  10. Martinive P, Defresne F, Quaghebeur E, Daneau G, Crokart N, Gregoire V, Gallez B, Dessy C, Feron O (2009) Impact of cyclic hypoxia on HIF-1alpha regulation in endothelial cells–new insights for anti-tumor treatments. Febs J 276:509–518

    Article  CAS  PubMed  Google Scholar 

  11. Endo A, Fukuhara S, Masuda M, Ohmori T, Mochizuki N (2003) Selective inhibition of vascular endothelial growth factor receptor-2 (VEGFR-2) identifies a central role for VEGFR-2 in human aortic endothelial cell responses to VEGF. J Recept Signal Transduct Res 23:239–254

    Article  CAS  PubMed  Google Scholar 

  12. Salameh A, Galvagni F, Bardelli M, Bussolino F, Oliviero S (2005) Direct recruitment of CRK, GRB2 to VEGFR-3 induces proliferation, migration, survival of endothelial cells through the activation of ERK, AKT, JNK pathways. Blood 106:3423–3431

    Article  CAS  PubMed  Google Scholar 

  13. Stoletov KV, Gong C, Terman BI (2004) Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover, integrin activation. Exp Cell Res 295:258–268

    Article  CAS  PubMed  Google Scholar 

  14. Hopfl G, Ogunshola O, Gassmann M (2004) HIFs tumors-causes, consequences. Am J Physiol Regul Integr Comp Physiol 286:R608–R623

    PubMed  Google Scholar 

  15. Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19:223–229

    Article  CAS  PubMed  Google Scholar 

  16. Brahimi-Horn MC, Pouyssegur J (2007) Hypoxia in cancer cell metabolism, pH regulation. Essays Biochem 43:165–178

    Article  CAS  PubMed  Google Scholar 

  17. Toffoli S, Feron O, Raes M, Michiels C (2007) Intermittent hypoxia changes HIF-1alpha phosphorylation pattern in endothelial cells: unravelling of a new PKA-dependent regulation of HIF-1alpha. Biochim Biophys Acta 1773:1558–1571

    Article  CAS  PubMed  Google Scholar 

  18. Zeleznikar RJ, Heyman RA, Graeff RM, Walseth TF, Dawis SM, Butz EA, Goldberg ND (1990) Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265:300–311

    CAS  PubMed  Google Scholar 

  19. Miclet E, Stoven V, Michels PA, Opperdoes FR, Lallemand JY, Duffieux F (2001) NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J Biol Chem 276:34840–34846

    Article  CAS  PubMed  Google Scholar 

  20. Jones RA, Kotsakis P, Johnson TS, Chau DY, Ali S, Melino G, Griffin M (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13:1442–1453

    Article  CAS  PubMed  Google Scholar 

  21. Ellen TP, Ke Q, Zhang P, Costa M (2008) NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis 29:2–8

    Article  CAS  PubMed  Google Scholar 

  22. Cangul H (2004) Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet 5:27

    Article  PubMed  Google Scholar 

  23. Cangul H, Salnikow K, Yee H, Zagzag D, Commes T, Costa M (2002) Enhanced overexpression of an HIF-1/hypoxia-related protein in cancer cells. Environ Health Perspect 110(Suppl 5):783–788

    CAS  PubMed  Google Scholar 

  24. Akiba J, Ogasawara S, Kawahara A, Nishida N, Sanada S, Moriya F, Kuwano M, Nakashima O, Yano H (2008) N-myc downstream regulated gene 1 (NDRG1)/Cap43 enhances portal vein invasion and intrahepatic metastasis in human hepatocellular carcinoma. Oncol Rep 20:1329–1335

    PubMed  Google Scholar 

  25. Chua MS, Sun H, Cheung ST, Mason V, Higgins J, Ross DT, Fan ST, So S (2007) Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma. Mod Pathol 20:76–83

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Wang F, Wang WQ, Gao Q, Wei WL, Yang Y, Wang GY (2004) Correlation of N-myc downstream-regulated gene 1 overexpression with progressive growth of colorectal neoplasm. World J Gastroenterol 10:550–554

    CAS  PubMed  Google Scholar 

  27. Shah MA, Kemeny N, Hummer A, Drobnjak M, Motwani M, Cordon-Cardo C, Gonen M, Schwartz GK (2005) Drg1 expression in 131 colorectal liver metastases: correlation with clinical variables and patient outcomes. Clin Cancer Res 11:3296–3302

    Article  CAS  PubMed  Google Scholar 

  28. Maruyama Y, Ono M, Kawahara A, Yokoyama T, Basaki Y, Kage M, Aoyagi S, Kinoshita H, Kuwano M (2006) Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/NDRG1/Drg-1 through modulation of angiogenesis. Cancer Res 66:6233–6242

    Article  CAS  PubMed  Google Scholar 

  29. Agarwala KL, Kokame K, Kato H, Miyata T (2000) Phosphorylation of RTP, an ER stress-responsive cytoplasmic protein. Biochem Biophys Res Commun 272:641–647

    Article  CAS  PubMed  Google Scholar 

  30. Sugiki T, Murakami M, Taketomi Y, Kikuchi-Yanoshita R, Kudo I (2004) N-myc downregulated gene 1 is a phosphorylated protein in mast cells. Biol Pharm Bull 27:624–627

    Article  CAS  PubMed  Google Scholar 

  31. Domhan S, Muschal S, Schwager C, Morath C, Wirkner U, Ansorge W, Maercker C, Zeier M, Huber PE, Abdollahi A (2008) Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid. Mol Cancer Ther 7:1656–1668

    Article  CAS  PubMed  Google Scholar 

  32. Tu LC, Yan X, Hood L, Lin B (2007) Proteomics analysis of the interactome of N-myc downstream regulated gene 1 and its interactions with the androgen response program in prostate cancer cells. Mol Cell Proteomics 6:575–588

    Article  CAS  PubMed  Google Scholar 

  33. Lamorte L, Rodrigues S, Naujokas M, Park M (2002) Crk synergizes with epidermal growth factor for epithelial invasion and morphogenesis and is required for the met morphogenic program. J Biol Chem 277:37904–37911

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues SP, Fathers KE, Chan G, Zuo D, Halwani F, Meterissian S, Park M (2005) CrkI and CrkII function as key signalling integrators for migration and invasion of cancer cells. Mol Cancer Res 3:183–194

    CAS  PubMed  Google Scholar 

  35. Feller SM (2001) Crk family adaptors-signalling complex formation and biological roles. Oncogene 20:6348–6371

    Article  CAS  PubMed  Google Scholar 

  36. Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M (1992) Two species of human CRK cDNA encode proteins with distinct biological activities. Mol Cell Biol 12:3482–3489

    CAS  PubMed  Google Scholar 

  37. Klemke RL, Leng J, Molander R, Brooks PC, Vuori K, Cheresh DA (1998) CAS/Crk coupling serves as a “molecular switch” for induction of cell migration. J Cell Biol 140:961–972

    Article  CAS  PubMed  Google Scholar 

  38. Uemura N, Griffin JD (1999) The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J Biol Chem 274:37525–37532

    Article  CAS  PubMed  Google Scholar 

  39. Tsuda M, Makino Y, Iwahara T, Nishihara H, Sawa H, Nagashima K, Hanafusa H, Tanaka S (2004) Crk associates with ERM proteins and promotes cell motility toward hyaluronic acid. J Biol Chem 279:46843–46850

    Article  CAS  PubMed  Google Scholar 

  40. Yano H, Uchida H, Iwasaki T, Mukai M, Akedo H, Nakamura K, Hashimoto S, Sabe H (2000) Paxillin alpha and Crk-associated substrate exert opposing effects on cell migration and contact inhibition of growth through tyrosine phosphorylation. Proc Natl Acad Sci USA 97:9076–9081

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sébastien Toffoli is recipient of a FNRS-Télévie grant. Carine Michiels is research director of FNRS and Olivier Feron is senior research associate of FNRS (Fonds National de la Recherche Scientifique, Belgium). This article presents results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The responsibility is assumed by its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Michiels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toffoli, S., Delaive, E., Dieu, M. et al. NDRG1 and CRK-I/II are regulators of endothelial cell migration under intermittent hypoxia. Angiogenesis 12, 339–354 (2009). https://doi.org/10.1007/s10456-009-9156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9156-2

Keywords

Navigation