Skip to main content

Advertisement

Log in

Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant condition in which susceptible individuals are at risk for the development of cutaneous leiomyomas, early onset multiple uterine leiomyomas and an aggressive form of type 2 papillary renal cell cancer. HLRCC is caused by germline mutations in the fumarate hydratase (FH) gene which inactivate the enzyme and alters the function of the tricarboxylic acid (Krebs) cycle. Issues surrounding surveillance and treatment for HLRCC-associated renal cell cancer were considered as part of a recent international symposium on HLRCC. The management protocol proposed in this article is based on a literature review and a consensus meeting. The lifetime renal cancer risk for FH mutation carriers is estimated to be 15 %. In view of the potential for early onset of RCC in HLRCC, periodic renal imaging and, when available, predictive testing for a FH mutation is recommended from 8 to 10 years of age. However, the small risk of renal cell cancer in the 10–20 years age range and the potential drawbacks of screening should be carefully discussed on an individual basis. Surveillance preferably consists of annual abdominal MRI. Treatment of renal tumours should be prompt and generally consist of wide-margin surgical excision and consideration of retroperitoneal lymph node dissection. The choice for systemic treatment in metastatic disease should, if possible, be part of a clinical trial. Screening procedures in HLRCC families should preferably be evaluated in large cohorts of families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Reed WB, Walker R, Horowitz R (1973) Cutaneous leiomyomata with uterine leiomyomata. Acta Derm Venereol 53:409–416

    CAS  PubMed  Google Scholar 

  2. Alam NA, Rowan AJ, Wortham NC et al (2003) Genetic and functional analyses of FH mutations in multiple cutaneous and uterine leiomyomatosis, hereditary leiomyomatosis and renal cancer, and fumarate hydratase deficiency. Hum Mol Genet 12:1241–1252

    Article  CAS  PubMed  Google Scholar 

  3. Alam NA, Barclay E, Rowan AJ et al (2005) Clinical features of multiple cutaneous and uterine leiomyomatosis. An underdiagnosed tumor syndrome. Arch Dermatol 141:199–206

    PubMed  Google Scholar 

  4. Merino MJ, Torres-Cabala C, Pinto P et al (2007) The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am J Surg Pathol 31:1578–1585

    Article  PubMed  Google Scholar 

  5. Grubb RL III, Franks ME, Toro J et al (2007) Hereditary leiomyomatosis and renal cell cancer: a syndrome associated with an aggressive form of inherited renal cancer. J Urol 177:2074–2080

    Article  CAS  PubMed  Google Scholar 

  6. Smit DL, Mensenkamp AR, Badeloe S et al (2011) Hereditary leiomyomatosis and renal cell cancer in families referred for fumarate hydratase germline mutation analysis. Clin Genet 79:49–59

    Article  CAS  PubMed  Google Scholar 

  7. Lehtonen HJ (2011) Hereditary leiomyomatosis and renal cell cancer: update on clinical and molecular characteristics. Fam Cancer 10:397–411

    Article  PubMed  Google Scholar 

  8. Tomlinson IPM, Alam NA, Rowan AJ et al (2002) The Multiple Leiomyoma Consortium. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:406–410

    Article  CAS  PubMed  Google Scholar 

  9. Toro JR, Nickerson ML, Wei M-H et al (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73:95–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bardella C, El-Bahrawy M, Frizzell N et al (2011) Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J Pathol 225:4–11

    Article  CAS  PubMed  Google Scholar 

  11. Castro-Vega LJ, Buffet A, De Cubas AA et al (2013) Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 23:2440–2446

  12. Srigley JR, Delahunt B, Eble JN et al (2013) The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am J Surg Pathol 37:1469–1489

    Article  PubMed  Google Scholar 

  13. Chen Y-B, Brannon AR, Toubaji A et al (2014) Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer. Recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am J Surg Pathol 38:627–637

    Article  PubMed  Google Scholar 

  14. Chuang GS, Martinez-Mir A, Engler DE et al (2005) Multiple cutaneous and uterine leiomyomata resulting from missense mutations in the fumarate hydratase gene. Clin Exp Dermatol 31:118–121

    Article  Google Scholar 

  15. Wei M-H, Toure O, Glenn GM et al (2006) Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 43:18–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Gardie B, Remenieras A, Kattygnarath D et al (2011) Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. J Med Genet 48:226–234

    Article  CAS  PubMed  Google Scholar 

  17. Chan I, Wong T, Martinez-Mir A et al (2005) Familial multiple cutaneous and uterine leiomyomas associated with papillary renal cell cancer. Clin Exp Dermatol 30:75–78

    Article  CAS  PubMed  Google Scholar 

  18. Lehtonen HJ, Kiuru M, Ylisaukko-oja SK et al (2006) Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet 43:523–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lehtonen HJ, Blanco I, Piulats JM et al (2007) Conventional renal cancer in a patient with fumarate hydratase mutation. Hum Pathol 38:793–796

    Article  CAS  PubMed  Google Scholar 

  20. Al Refae M, Wong N, Patenaude F et al (2007) Hereditary leiomyomatosis and renal cell cancer: an unusual and aggressive form of hereditary renal carcinoma. Nat Clin Pract Oncol 4:256–261

    Article  Google Scholar 

  21. Ghaninejad H, Moeineddin F, Rajaee A et al (2008) Hereditary leiomyomatosis and renal cell carcinoma syndrome: a case report. Dermatol Online J 14:16

    Google Scholar 

  22. Ahvenainen T, Lehtonen HJ, Lehtonen R et al (2008) Mutation screening of fumarate hydratase by multiplex ligation-dependent probe amplification: detection of exonic deletion in a patient with leiomyomatosis and renal cell cancer. Cancer Genet Cytogenet 183:83–88

    Article  CAS  PubMed  Google Scholar 

  23. Alrashdi I, Levine S, Paterson J et al (2010) Hereditary leiomyomatosis and renal cell carcinoma: very early diagnosis of renal cancer in a paediatric patient. Fam Cancer 9:239–243

    Article  PubMed  Google Scholar 

  24. Rongioletti F, Fausti V, Ferrando B et al (2010) A novel missense mutation in fumarate hydratase in an Italian patient with a diffuse variant of cutaneous leiomyomatosis (Reed’s syndrome). Dermatology 221:378–380

    Article  CAS  PubMed  Google Scholar 

  25. Onder M, Glenn G, Adisen E et al (2010) Cutaneous papules, uterine fibroids, and renal cell cancer: one family’s tale. Lancet 375:170

    Article  PubMed  Google Scholar 

  26. Yamasaki T, Tran TAT, Oz OK et al (2011) Exploring a glycolytic inhibitor for the treatment of an FH-deficient type-2 papillary RCC. Nat Rev Urol 8:165–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Raymond VM, Herron CM, Giordano TJ et al (2012) Familial renal cancer as an indicator of hereditary leiomyomatosis and renal cell cancer syndrome. Fam Cancer 11:115–121

    Article  PubMed  Google Scholar 

  28. Van Spaendonck-Zwarts KY, Badeloe S, Oosting SF et al (2012) Hereditary leiomyomatosis and renal cell cancer presenting as metastatic kidney cancer at 18 years of age: implications for surveillance. Fam Cancer 11:123–129

    Article  PubMed Central  PubMed  Google Scholar 

  29. Behnes CL, Schlegel C, Shoukier M et al (2013) Hereditary papillary renal cell carcinoma primarily diagnosed in a cervical lymph node: a case report of a 30-year-old woman with multiple metastases. BMC Urol 13:3

    Article  PubMed Central  PubMed  Google Scholar 

  30. Kuwada M, Chihara Y, Lou Y et al (2014) Novel missense mutation in the FH gene in familial renal cancer patients lacking cutaneous leiomyomas. BMC Res Notes 7:203

    Article  PubMed Central  PubMed  Google Scholar 

  31. Bayley J-P, Launonen V, Tomlinson IPM (2008) The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency. BMC Med Genet 9:20

    Article  PubMed Central  PubMed  Google Scholar 

  32. Vahteristo P, Koski TA, Näätsaari L et al (2010) No evidence for a genetic modifier for renal cell cancer risk in HLRCC syndrome. Fam Cancer 9:245–251

    Article  PubMed  Google Scholar 

  33. Kennedy PA (2012) Wood CG Integration of surgery and systemic therapy for renal cell carcinoma. Urol Clin N Am 39:211–231

    Article  Google Scholar 

  34. MacLennan S, Imamura M, Lapitan MC et al (2012) Systematic review of oncological outcomes following surgical management of localised renal cancer. Eur Urol 61:972–993

    Article  PubMed  Google Scholar 

  35. Walther MM, Choyke PL, Glenn G et al (1999) Renal cancer in families with hereditary renal cancer: prospective analysis of a tumor size threshold for renal parenchymal sparing surgery. J Urol 161:1475–1479

    Article  CAS  PubMed  Google Scholar 

  36. Herring JC, Enquist EG, Chernoff A et al (2001) Parenchymal sparing surgery in patients with hereditary renal cell carcinoma: 10-year experience. J Urol 165:777–781

    Article  CAS  PubMed  Google Scholar 

  37. Duffey BG, Choyke PL, Glenn G et al (2004) The relationship between renal tumor size and metastases in patients with von Hippel–Lindau disease. J Urol 172:63–65

    Article  PubMed  Google Scholar 

  38. Grubb RL III, Choyke PL, Pinto PA et al (2005) Management of von Hippel–Lindau-associated kidney cancer. Nat Clin Pract Urol 2:248–255

    Article  PubMed  Google Scholar 

  39. Pavlovich CP, Grubb RL III, Hurley K et al (2005) Evaluation and management of renal tumors in the Birt–Hogg–Dubé syndrome. J Urol 173:1482–1486

    Article  PubMed  Google Scholar 

  40. Joly D, Méjean A, Corréas JM et al (2011) Progress in nephron sparing therapy for renal cell carcinoma and von Hippel–Lindau disease. J Urol 185:2056–2060

    Article  PubMed  Google Scholar 

  41. Hu B, Lara PN Jr, Evans CP (2012) Defining an individualized treatment strategy for metastatic renal cancer. Urol Clin N Am 39:233–249

    Article  Google Scholar 

  42. Ljungberg B, Bensalah K, Bex A et al (2013) Guidelines on renal cell carcinoma. Eur Assoc Urol. www.uroweb.org

  43. Linehan WM, Srinivasan R, Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7:277–285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Linehan WM (2012) Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics. Genome Res 22:2089–2100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Mullen AR, Wheaton WW, Jin ES (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388

    PubMed Central  PubMed  Google Scholar 

  46. Tong W-H, Sourbier C, Kovtunovych G et al (2011) The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20:315–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Isaacs JS, Jung YJ, Mole DR et al (2005) HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–153

    Article  CAS  PubMed  Google Scholar 

  48. Yang M, Soga T, Pollard PJ et al (2012) The emerging role of fumarate as an oncometabolite. Front Oncol 2:85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Xiao M, Yang H, Xu W et al (2012) Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Singer EA, Gupta GN, Srinivasan R (2012) Targeted therapeutic strategies for the management of renal cell carcinoma. Curr Opin Oncol 24:284–290

    Article  PubMed Central  PubMed  Google Scholar 

  52. Linehan WM, Rouault TA (2013) Molecular pathways: fumarate hydratase-deficient kidney cancer—targeting the Warburg effect in cancer. Clin Cancer Res 19:3345–3352

    Article  CAS  PubMed  Google Scholar 

  53. Stewart L, Glenn GM, Stratton P et al (2008) Association of germline mutations in the fumarate hydratase gene and uterine fibroids in women with hereditary leiomyomatosis and renal cell cancer. Arch Dermatol 144:1584–1592

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and the Intramural Research Program of the NIH, Frederick National Laboratory, Center for Cancer Research. This project has been funded in part with federal funds from the Frederick National Laboratory for Cancer Research, NIH, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government. The research was also supported by the Wellcome Trust Centre for Human Genetics, Grant Reference 090532/Z/09/Z. The Centre Expert National Cancers Rares PREDIR (S. Richard) is supported by grants from the French National Cancer Institute (INCa) and the French Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred H. Menko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menko, F.H., Maher, E.R., Schmidt, L.S. et al. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Familial Cancer 13, 637–644 (2014). https://doi.org/10.1007/s10689-014-9735-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-014-9735-2

Keywords

Navigation