Skip to main content

Advertisement

Log in

Role of PD-1 in HIV Pathogenesis and as Target for Therapy

  • The Science of HIV (AL Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Major advances in Antiretroviral Therapy (ART) have resulted in a dramatic decline in HIV-related deaths. However, no current treatment regimen leads to viral eradication or restoration of HIV-specific immune responses capable of durable viral control after cessation of ART. Thus, there is a need for novel interventions that could complement ART in order to eliminate virus or reach a state of “functional cure.” It has been shown in murine models and humans that the negative co-signaling molecule programmed-death 1 (PD-1) plays an active and reversible role in mediating T-cell exhaustion in chronic infections. This review summarizes recent advances in our understanding of the PD-1 pathway in HIV infection, and the lessons learned from studies in the SIV model and cancer. We discuss the potential of immunotherapeutic interventions targeting PD-1 in order to augment immune responses or facilitate viral eradication. We also present the challenges to therapies targeting immunoregulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zajac AJ, Blattman JN, Murali-Krishna K, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188:2205–13.

    Article  PubMed  CAS  Google Scholar 

  2. Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell. 2009;138:30–50.

    Article  PubMed  CAS  Google Scholar 

  3. Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology. 2010;129:474–81.

    Article  PubMed  CAS  Google Scholar 

  4. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12:492–9.

    Article  PubMed  CAS  Google Scholar 

  5. Trautmann L, Janbazian L, Chomont N, et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat Med. 2006;12:1198–202.

    Article  PubMed  CAS  Google Scholar 

  6. Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–4.

    Article  PubMed  CAS  Google Scholar 

  7. Petrovas C, Casazza JP, Brenchley JM, et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J Exp Med. 2006;203:2281–92.

    Article  PubMed  CAS  Google Scholar 

  8. Bour-Jordan H, Esensten JH, Martinez-Llordella M, et al. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev. 2011;241:180–205.

    Article  PubMed  CAS  Google Scholar 

  9. Lafferty KJ, Cunningham AJ. A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci. 1975;53:27–42.

    Article  PubMed  CAS  Google Scholar 

  10. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.

    Article  PubMed  CAS  Google Scholar 

  11. Curtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol. 2010;22:333–40.

    Article  PubMed  CAS  Google Scholar 

  12. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4:336–47.

    Article  PubMed  CAS  Google Scholar 

  13. Wang S, Chen L. T lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol. 2004;1:37–42.

    PubMed  Google Scholar 

  14. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.

    Article  PubMed  Google Scholar 

  15. Duraiswamy J, Ibegbu CC, Masopust D, et al. Phenotype, function, and gene expression profiles of programmed death-1(hi) CD8 T cells in healthy human adults. J Immunol. 2011;186:4200–12.

    Article  PubMed  CAS  Google Scholar 

  16. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.

    Article  PubMed  CAS  Google Scholar 

  17. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.

    Article  PubMed  CAS  Google Scholar 

  18. Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001;291:319–22.

    Article  PubMed  CAS  Google Scholar 

  19. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed  CAS  Google Scholar 

  20. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  PubMed  CAS  Google Scholar 

  21. Theze J, Chakrabarti LA, Vingert B, et al. HIV controllers: a multifactorial phenotype of spontaneous viral suppression. Clin Immunol. 2011 Aug 4. [Epub ahead of print]

  22. Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–7.

    Article  PubMed  CAS  Google Scholar 

  23. Iwai Y, Ishida M, Tanaka Y, et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99:12293–7.

    Article  PubMed  CAS  Google Scholar 

  24. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170:1257–66.

    PubMed  CAS  Google Scholar 

  25. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.

    PubMed  CAS  Google Scholar 

  26. Ha SJ, Mueller SN, Wherry EJ, et al. Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection. J Exp Med. 2008;205:543–55.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang JY, Zhang Z, Wang X, et al. PD-1 up-regulation is correlated with HIV-specific memory CD8+ T-cell exhaustion in typical progressors but not in long-term nonprogressors. Blood. 2007;109:4671–8.

    Article  PubMed  CAS  Google Scholar 

  28. Maier H, Isogawa M, Freeman GJ, Chisari FV. PD-1:PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver. J Immunol. 2007;178:2714–20.

    PubMed  CAS  Google Scholar 

  29. Golden-Mason L, Palmer B, Klarquist J, et al. Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J Virol. 2007;81:9249–58.

    Article  PubMed  CAS  Google Scholar 

  30. Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. Gastroenterology. 2010;138:682–93. 693 e1-4.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Z, Zhang JY, Wherry EJ, et al. Dynamic programmed death 1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterology. 2008;134:1938–49. 1949.e1-3.

    Article  PubMed  Google Scholar 

  32. Petrovas C, Price DA, Mattapallil J, et al. SIV-specific CD8+ T cells express high levels of PD1 and cytokines but have impaired proliferative capacity in acute and chronic SIVmac251 infection. Blood. 2007;110:928–36.

    Article  PubMed  CAS  Google Scholar 

  33. Velu V, Kannanganat S, Ibegbu C, et al. Elevated expression levels of inhibitory receptor programmed death 1 on simian immunodeficiency virus-specific CD8 T cells during chronic infection but not after vaccination. J Virol. 2007;81:5819–28.

    Article  PubMed  CAS  Google Scholar 

  34. Streeck H, Brumme ZL, Anastario M, et al. Antigen load and viral sequence diversification determine the functional profile of HIV-1-specific CD8+ T cells. PLoS Med. 2008;5:e100.

    Article  PubMed  Google Scholar 

  35. Salisch NC, Kaufmann DE, Awad AS, et al. Inhibitory TCR coreceptor PD-1 is a sensitive indicator of low-level replication of SIV and HIV-1. J Immunol. 2010;184:476–87.

    Article  PubMed  CAS  Google Scholar 

  36. Conrad JA, Ramalingam RK, Smith RM, et al. Dominant clonotypes within HIV-specific T cell responses are programmed death-1high and CD127low and display reduced variant cross-reactivity. J Immunol. 2011;186:6871–85.

    Article  PubMed  CAS  Google Scholar 

  37. •• Blackburn SD, Shin H, Haining WN, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10:29–37. The authors provide evidence that virus-specific CD8 T cells are governed by multiple inhibitory receptors.

    Article  PubMed  CAS  Google Scholar 

  38. Jones RB, Ndhlovu LC, Barbour JD, et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med. 2008;205:2763–79.

    Article  PubMed  CAS  Google Scholar 

  39. • Jin HT, Anderson AC, Tan WG, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2010;107:14733–38. The authors provide evidence that HIV-specific CD8 T cells are governed by Tim-3 and PD-1.

    Article  PubMed  CAS  Google Scholar 

  40. Brooks DG, Ha SJ, Elsaesser H, et al. IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. Proc Natl Acad Sci U S A. 2008;105:20428–33.

    Article  PubMed  CAS  Google Scholar 

  41. • Yamamoto T, Price DA, Casazza JP, et al. Surface expression patterns of negative regulatory molecules identify determinants of virus-specific CD8+ T-cell exhaustion in HIV infection. Blood. 2011;117:4805–15. The authors provide evidence that HIV-specific CD8 T cells are governed by multiple inhibitor receptors.

    Article  PubMed  CAS  Google Scholar 

  42. • Porichis F, Kwon DS, Zupkosky J, et al. Responsiveness of HIV-specific CD4 T cells to PD-1 blockade. Blood. 2011;118:965–74. The authors investigated the effect of blockade of the PD-1 pathway on the effector function of HIV-specific CD4 T cells from subjects at various stages of disease.

    Article  PubMed  CAS  Google Scholar 

  43. •• Quigley M, Pereyra F, Nilsson B, et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med. 2010;16:1147–51. The authors identified the molecular signature of HIV-specific T-cell exhaustion and showed that a transcription factor BATF is upregulated by the PD-1 pathway and regulated HIV-specific T-cell exhaustion.

    Article  PubMed  CAS  Google Scholar 

  44. Dorsey MJ, Tae HJ, Sollenberger KG, et al. B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene. 1995;11:2255–65.

    PubMed  CAS  Google Scholar 

  45. Echlin DR, Tae HJ, Mitin N, Taparowsky EJ. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos. Oncogene. 2000;19:1752–63.

    Article  PubMed  CAS  Google Scholar 

  46. Ise W, Kohyama M, Schraml BU, et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat Immunol. 2011;12:536–43.

    Article  PubMed  CAS  Google Scholar 

  47. Kuroda S, Yamazaki M, Abe M, et al. Basic leucine zipper transcription factor, ATF-like (BATF) regulates epigenetically and energetically effector CD8 T-cell differentiation via Sirt1 expression. Proc Natl Acad Sci U S A. 2011;108:14885–9.

    Article  PubMed  CAS  Google Scholar 

  48. Porichis F, Kaufmann DE. HIV-specific CD4 T cells and immune control of viral replication. Curr Opin HIV AIDS. 2011;6:174–80.

    Article  PubMed  Google Scholar 

  49. D’Souza M, Fontenot AP, Mack DG, et al. Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction. J Immunol. 2007;179:1979–87.

    PubMed  Google Scholar 

  50. Kaufmann DE, Kavanagh DG, Pereyra F, et al. Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol. 2007;8:1246–54.

    Article  PubMed  CAS  Google Scholar 

  51. • Kassu A, Marcus RA, D’Souza MB, et al. Regulation of virus-specific CD4+ T cell function by multiple costimulatory receptors during chronic HIV infection. J Immunol. 2010;185:3007–18. The authors showed that HIV-specific CD4 T cells are regulated by multiple inhibitory receptors.

    Article  PubMed  CAS  Google Scholar 

  52. Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–28.

    Article  PubMed  CAS  Google Scholar 

  53. Trabattoni D, Saresella M, Biasin M, et al. B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood. 2003;101:2514–20.

    Article  PubMed  CAS  Google Scholar 

  54. Meier A, Bagchi A, Sidhu HK, et al. Upregulation of PD-L1 on monocytes and dendritic cells by HIV-1 derived TLR ligands. AIDS. 2008;22:655–8.

    Article  PubMed  CAS  Google Scholar 

  55. Sachdeva M, Fischl MA, Pahwa R, et al. Immune exhaustion occurs concomitantly with immune activation and decrease in regulatory T cells in viremic chronically HIV-1-infected patients. J Acquir Immune Defic Syndr. 2010;54:447–54.

    Article  PubMed  CAS  Google Scholar 

  56. Wang X, Zhang Z, Zhang S, et al. B7-H1 up-regulation impairs myeloid DC and correlates with disease progression in chronic HIV-1 infection. Eur J Immunol. 2008;38:3226–36.

    Article  PubMed  CAS  Google Scholar 

  57. Boasso A, Hardy AW, Landay AL, et al. PDL-1 upregulation on monocytes and T cells by HIV via type I interferon: restricted expression of type I interferon receptor by CCR5-expressing leukocytes. Clin Immunol. 2008;129:132–44.

    Article  PubMed  CAS  Google Scholar 

  58. Rodriguez-Garcia M, Porichis F, de Jong OG, et al. Expression of PD-L1 and PD-L2 on human macrophages is up-regulated by HIV-1 and differentially modulated by IL-10. J Leukoc Biol. 2011;89:507–15.

    Article  PubMed  CAS  Google Scholar 

  59. Muthumani K, Shedlock DJ, Choo DK, et al. HIV-Mediated Phosphatidylinositol 3-Kinase/Serine-Threonine Kinase Activation in APCs Leads to Programmed Death-1 Ligand Upregulation and Suppression of HIV-Specific CD8 T Cells. J Immunol. 2011;187:2932–43.

    Article  PubMed  CAS  Google Scholar 

  60. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med. 2006;12:1365–71.

    Article  PubMed  CAS  Google Scholar 

  61. •• Said EA, Dupuy FP, Trautmann L, et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med. 2010;16:452–9. The authors show how microbial products can regulate T-cell dysregulation through a mechanism that involves the PD-1–induced production of IL-10 in monocytes.

    Article  PubMed  CAS  Google Scholar 

  62. Baker JV, Peng G, Rapkin J, et al. CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection. AIDS. 2008;22:841–8.

    Article  PubMed  Google Scholar 

  63. Lichtenstein KA, Armon C, Buchacz K, et al. Low CD4+ T cell count is a risk factor for cardiovascular disease events in the HIV outpatient study. Clin Infect Dis. 2010;51:435–47.

    Article  PubMed  CAS  Google Scholar 

  64. Grabmeier-Pfistershammer K, Steinberger P, Rieger A, et al. Identification of PD-1 as a unique marker for failing immune reconstitution in HIV-1-infected patients on treatment. J Acquir Immune Defic Syndr. 2011;56:118–24.

    Article  PubMed  CAS  Google Scholar 

  65. Nakanjako D, Ssewanyana I, Mayanja-Kizza H, et al. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort. BMC Infect Dis. 2011;11:43–51.

    Article  PubMed  CAS  Google Scholar 

  66. Antonelli LR, Mahnke Y, Hodge JN, Porter BO, Barber DL, DerSimonian R, Greenwald JH, Roby G, Mican J, Sher A, et al. Elevated frequencies of highly activated CD4+ T cells in HIV + patients developing immune reconstitution inflammatory syndrome. Blood. 2010;116:3818–27.

    Article  PubMed  CAS  Google Scholar 

  67. •• Chomont N, El-Far M, Ancuta P, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med. 2009;15:893–900. The authors showed HIV proviral DNA is harbored by cells that express high levels of PD-1.

    Article  PubMed  CAS  Google Scholar 

  68. Da Fonseca S. Chomont N, El-Far M, et al. Purging the HIV-1 reservoir through the disruption of the PD-1 pathway [abstract 268] presented at the 18th Conference on Retroviruses and Opportunistic Infections, Boston, USA; February 27-March 2, 2011.

  69. Lipsky PE, van der Heijde DM, St Clair EW, et al. Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med. 2000;343:1594–602.

    Article  PubMed  CAS  Google Scholar 

  70. Ha SJ, West EE, Araki K, et al. Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections. Immunol Rev. 2008;223:317–33.

    Article  PubMed  CAS  Google Scholar 

  71. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14:3044–51.

    Article  PubMed  CAS  Google Scholar 

  72. •• Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75. A phase 1 clinical trial testing the safety of PD-1–blocking antibodies in subjects with refractory solid tumors.

    Article  PubMed  CAS  Google Scholar 

  73. Silvestri G, Feinberg MB. Turnover of lymphocytes and conceptual paradigms in HIV infection. J Clin Invest. 2003;112:821–4.

    PubMed  CAS  Google Scholar 

  74. Hunt PW, Martin JN, Sinclair E, et al. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis. 2011;203:1474–83.

    Article  PubMed  CAS  Google Scholar 

  75. •• Velu V, Titanji K, Zhu B, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009;458:206–10. A small pilot study in SIV macaques showing that administration of PD-1–blocking antibody was well tolerated and improved T-cell immune responses.

    Article  PubMed  CAS  Google Scholar 

  76. •• Titanji K, Velu V, Chennareddi L, et al. Acute depletion of activated memory B cells involves the PD-1 pathway in rapidly progressing SIV-infected macaques. J Clin Invest. 2010;120:3878–90. The authors showed that administration of PD-1–blocking antibody in SIV macaques increased expansion of B cells and envelope-specific antibodies.

    Article  PubMed  CAS  Google Scholar 

  77. Finnefrock AC, Tang A, Li F, et al. PD-1 blockade in rhesus macaques: impact on chronic infection and prophylactic vaccination. J Immunol. 2009;182:980–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

D.E.K. is supported by grants from the National Institutes of Health (NIH RO1 HL 092565 and P01AI-080192). F.P. is supported by a fellowship grant from Executive Committee on Research of the Massachusetts General Hospital (ECOR).

Disclosure

F. Porichis: none; D. E. Kaufmann: consultant to Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Kaufmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porichis, F., Kaufmann, D.E. Role of PD-1 in HIV Pathogenesis and as Target for Therapy. Curr HIV/AIDS Rep 9, 81–90 (2012). https://doi.org/10.1007/s11904-011-0106-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-011-0106-4

Keywords

Navigation