Articles
Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans

https://doi.org/10.1016/S2213-2600(20)30243-5Get rights and content

Summary

Background

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly across the USA, causing extensive morbidity and mortality, particularly in the African American community. Autopsy can considerably contribute to our understanding of many disease processes and could provide crucial information to guide management of patients with coronavirus disease 2019 (COVID-19). We report on the relevant cardiopulmonary findings in, to our knowledge, the first autopsy series of ten African American decedents, with the cause of death attributed to COVID-19.

Methods

Autopsies were performed on ten African American decedents aged 44–78 years with cause of death attributed to COVID-19, reflective of the dominant demographic of deaths following COVID-19 diagnosis in New Orleans. Autopsies were done with consent of the decedents' next of kin. Pulmonary and cardiac features were examined, with relevant immunostains to characterise the inflammatory response, and RNA labelling and electron microscopy on representative sections.

Findings

Important findings include the presence of thrombosis and microangiopathy in the small vessels and capillaries of the lungs, with associated haemorrhage, that significantly contributed to death. Features of diffuse alveolar damage, including hyaline membranes, were present, even in patients who had not been ventilated. Cardiac findings included individual cell necrosis without lymphocytic myocarditis. There was no evidence of secondary pulmonary infection by microorganisms.

Interpretation

We identify key pathological states, including thrombotic and microangiopathic pathology in the lungs, that contributed to death in patients with severe COVID-19 and decompensation in this demographic. Management of these patients should include treatment to target these pathological mechanisms.

Funding

None.

Cited by (0)

View Abstract