Skip to main content
Log in

Age-dependent degradation of amyloid precursor protein in the post-mortem mouse brain cortex

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We have examined the degradation of amyloid precursor protein (APP) in the brain cortex of adult (24±2) and old (58±2) mice at different post-mortem time intervals (0, 1.5, 3, 6, 12 and 24 h). The brain cortex extract was prepared and processed for immunoblotting using antibodies against N-terminal 47–62 amino acids (Asp29) and central 301–316 amino acids containing Kunitz protease inhibitor (KPI) domain (Asp45) of APP. Asp29 (N-terminal) recognizes two bands of 140 and 112 kDa. The amount of 140 kDa is relatively higher in adult than old. The level of 112 kDa is 1.6 times lower in adult than old. It shows no remarkable change with varying post-mortem time. On the other hand, Asp45 (KPI) detects two bands of 110 and 116 kDa. While 116 kDa disappears rapidly after death of the animal, 110 kDa shows no remarkable change with different post-mortem periods. Further incubation of the disrupted tissue at 4 °C for 24 h and immunoblot analysis with Asp29 (N-terminal) shows 112 kDa in both ages but 58.5 kDa in adult and 70 kDa in old only. Analysis with Asp45 (KPI) shows only 54 kDa which increases after 3 h in adult but decreases significantly after 1.5 h and becomes undetectable at 24 h in old. Thus the present findings indicate that APP is degraded in a precise pattern and it depends on cellular intactness, post-mortem period and age of the animal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weidemann A, Konig G, Bunke D, Fischer P, Salbaum JM, Masters CL & Beyreuther K (1989) Cell 57: 115–126

    PubMed  Google Scholar 

  2. Golde TE, Estus S, Usiak M, Younkin LH & Younkin SG (1990) Neuron 4: 253–267

    PubMed  Google Scholar 

  3. Beyreuther K, Bush IA, Dyrks T, Hilbich C, Koniz G, Monning U, Multhaup G, Brior R, Rumble B, Schubert W, Small DH, Weidemann A & Masters CL (1991) Annals New York Academy Science 640: 129–139

    Google Scholar 

  4. Whitson J, Selkoe DJ & Cotman CW(1989) Science 243: 65–68

    Google Scholar 

  5. Mattson MP, Cheng B, Culwell AR, Esch FS, Liederburg T & Rydel RE (1993) Neuron 11: 243–254

    Google Scholar 

  6. Breen KC, Bruce M & Anderton BH (1991) J. Neurosci. Res. 28: 90–100

    PubMed  Google Scholar 

  7. Schellenberg G (1994) Neurobiol. Aging 15: 141–144

    Google Scholar 

  8. Hanks SD & Flood DG (1991) Brain Res. 540: 63–82

    PubMed  Google Scholar 

  9. Kang J & Muller-Hill B (1990) Biochem. Biophys. Res. Commun. 166: 1192–1200

    PubMed  Google Scholar 

  10. Anderson JP, Chen T, Kin KS & Robakis NK (1992) J. Neurochem. 59: 2328–2331

    PubMed  Google Scholar 

  11. Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL, Bryant K, Fritz LC, Galarko D, Thal LJ, Liederburg T & Schenk DB (1993) Nature 361: 260–263

    PubMed  Google Scholar 

  12. Robakis NK (1994) In: Alzheimer disease (Terry RD, Katzman R & Bick KL, eds Ravan Press Ltd., New York), pp 314–326

    Google Scholar 

  13. Iizuka T, Shoji M & Kawarabayashi T, Sato S, Kobayashi T, Tada N, Kasai K, Matsubara E, Watanabe M, Tomidokoro Y & Hirai S (1996) Biochem. Biophys. Res. Commun., 218: 238–242

    PubMed  Google Scholar 

  14. deDuve C, Pressman BC, Gianetti R, Wattiaux R & Appelman F (1955) Biochem. J. 60: 604–617

    PubMed  Google Scholar 

  15. Cole GM, Bell L, Truong Q & Saitoh T (1992) Ann. NY Acad. Sci. 674: 103–117

    PubMed  Google Scholar 

  16. Sambamurthi K, Refolo LM, Shioi J, Papolla PA & Robakis NK (1992) Ann. NY Acad. Sci. 674: 118–128

    PubMed  Google Scholar 

  17. Cataldo AM, Hamilton DJ & Nixon RA (1994) Brain Res. 640: 68–80

    PubMed  Google Scholar 

  18. Estus S, Golde TE & Younkin SG (1992) Ann. NY Acad. Sci. 674: 138–148

    PubMed  Google Scholar 

  19. Haass C, Hung AY, Scholssmacher MG, Teplow DB & Selkoe DJ (1993) J. Biol. Chem. 268: 3021–3024

    PubMed  Google Scholar 

  20. Siman R, Mistretta B, Durkin JT, Savage MJ, Loh T, Trusko S & Scott RW (1993) J. Biol. Chem. 268: 16602–16609

    PubMed  Google Scholar 

  21. Shoji M, Golde TE, Ghiso J, Cheung T, Estus S, Shaffer LM, Oai XD, Tintner R & Fragione B (1992) Science 258: 126–129

    PubMed  Google Scholar 

  22. Haass C & Selkoe DJ (1993) Cell 75: 1039–1042

    PubMed  Google Scholar 

  23. Koo EH & Squazzo SL (1994) J. Biol. Chem. 269: 17386–17389

    PubMed  Google Scholar 

  24. Buscaglio J, Gabuzda DH, Matsudaira P & Yankner BA (1993) Proc. Natl. Acad. Sci. USA 90: 2090–2096

    Google Scholar 

  25. Ladror US, Snyder SW, Wand TW, Holzman TF & Krafft GA (1994) J. Biol. Chem. 269: 18422–18428

    PubMed  Google Scholar 

  26. Shi GP, Webb AC, Foster KE, Knoll JHM, Lemere CA, Munger JS & Chapman HJ (1994) J. Biol. Chem. 269: 11530–11536

    PubMed  Google Scholar 

  27. Caporaso GL, Gandy SE, Buxbaum JD & Greengard P (1992) Proc. Natl. Acad. Sci. USA 89: 2252–2256

    PubMed  Google Scholar 

  28. Neve RL, Kammoscheidt A & Hohmann LF (1992) Proc. Natl Acad. Sci. USA 89: 3448–3452

    PubMed  Google Scholar 

  29. Cataldo AM, Barnett JL, Berman SA, Li J, Quariess S, Bursztajn S, Lipps C & Nixon RA (1995) Neuron 14:671–680

    PubMed  Google Scholar 

  30. Neill D, Hughes D, Edwardson JA, Rima BK & Allsop D (1994) J. Neurosci. Res. 39: 482–493

    PubMed  Google Scholar 

  31. Asaithambi A, Mukherjee S & Thakur MK (1997) Biochem. Biophys. Res. Commn. 231: 683–685

    Google Scholar 

  32. Bradford MM (1976) Anal. Biochem. 72: 248–254

    Article  PubMed  Google Scholar 

  33. Laemmli UK (1970) Nature 227: 680–685

    PubMed  Google Scholar 

  34. Ausubel F, Brant R, Kinston RE, Moore DD, Scidman JG, Smith JA & Struhl K (1995) In: Short Protocols in Molecular Biology, John Wiley and Sons, Inc. USA

    Google Scholar 

  35. Bruning JL & Kintz BL (1977) Computational handbook of statistics, Scott, Foreman and Company, England

    Google Scholar 

  36. Anderson JP, Esch FS, Keim PS, Sambamurti K, Lieberburg I & Robakis NK (1991) Neurosci. Lett 128: 126–128

    PubMed  Google Scholar 

  37. Hardy J & Higgins GA (1992) Science 256: 184–185

    PubMed  Google Scholar 

  38. Potempska A, Styles J, Mehta P, Kim KS & Miller DI (1991) Mol. Biol. Rep. 13: 221–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asaithambi, A., Mukherjee, S. & Thakur, M.K. Age-dependent degradation of amyloid precursor protein in the post-mortem mouse brain cortex. Mol Biol Rep 26, 179–184 (1999). https://doi.org/10.1023/A:1007045806861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007045806861

Navigation