Skip to main content
Log in

Her-2/neu and Topoisomerase iiα in Breast Cancer

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In breast cancer, the predominant genetic mechanism for oncogene activation is through an amplification of a gene. The HER-2 (also known as ErbB2/c-erbB2/HER-2/neu) oncogene is the most frequently amplified oncogene in breast cancer, and its overexpression is associated with poor clinical outcome. In addition to its important role in breast cancer growth and progression, HER-2 is also a target for a new form of chemotherapy. Breast cancer patients have been treated with considerable success since 1998 with trastuzumab, a recombinant antibody designed to block signaling through HER-2 receptor. HER-2 has also been implicated in altering the chemosensitivity of breast cancer cells to different forms of conventional cytotoxic chemotherapy, particularly of topoII-inhibitors (e.g., anthracyclines). Topoisomerase IIα gene is located just by the HER-2 oncogene at the chromosome 17q12–q21 and is amplified or deleted in almost 90% of the HER-2 amplified primary breast tumors. Recent data suggests that amplification and deletion of topoisomerase IIα may account for both relative chemosensitivity and resistance to anthracycline therapy, depending on the specific genetic defect at the topoIIα locus. Expanding our understanding of HER-2 amplification also changes its role in the pathogenesis of breast cancer. HER-2 is an oncogene that clearly can drive tumor induction and growth and is also a target for a new kind of chemotherapy, but its function as a marker for chemoselection may be due to associated genetic changes, of which topoisomerase IIα is a good example. Moreover, despite potential evidence that genes other than HER-2, such as topoisomerase IIα, may be more important predictors of therapeutic response in breast cancer, HER-2 status still has a very significant role in therapeutic selection, mainly as the major criterion for administering trastuzumab in treating breast cancer. Thus, the clinical and therapeutic importance of the HER-2 and topoisomerase IIα status to breast cancer management should only increase in the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pauletti G, Godolphin W, Press MF, Slamon DJ: Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene 13: 63-72, 1996

    Google Scholar 

  2. Press MF, Bernstein L, Thomas PA, Meisner LF, Zhou JY, Ma Y, Hung G, Robinson RA, Harris C, El-Naggar A, Slamon DJ, Phillips RN, Ross JS, Wolman SR, Flom KJ: HER-2/neu gene amplification characterized by fluorescence in situ hybridization: poor prognosis in node-negative breast carcinomas. J Clin Oncol 15: 2894-2904, 1997

    Google Scholar 

  3. Ross JS, Fletcher JA: HER-2/neu(c-erb-B2) gene and protein in breast cancer. Am J Clin Pathol 112(Suppl 1): S53-S67, 1999

    Google Scholar 

  4. Clark GM: Should selection of adjuvant chemotherapy for patients with breast cancer be based on erbB-2 status? J Natl Cancer I 90: 1320-1321, 1998

    Google Scholar 

  5. Järvinen TAH, Liu ET: Effects of HER-2/neu on chemosensitivity of tumor cells. Drug Resist Update 3: 319-324, 2000

    Google Scholar 

  6. Yu D, Hung M-C: Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene 19: 6115-6121, 2000

    Google Scholar 

  7. Yamauchi H, Stearns V, Hayes DF: When is a tumor marker ready for prime time? A case study of c-erbB-2 as a predictive factor in breast cancer. J Clin Oncol 19: 2334-2356, 2001

    Google Scholar 

  8. Bange J, Zwick E, Ullrich A: Molecular targets for breast cancer therapy and prevention. Nat Med 7: 548-552, 2001

    Google Scholar 

  9. Olayioye MA, Neve RM, Lane HA, Hynes NE: The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19: 3159-3167, 2000

    Google Scholar 

  10. Klapper LN, Kirschbaum MH, SelaM, Yarden Y: Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv Cancer Res 77: 25-79, 2000

    Google Scholar 

  11. Harari D, Yarden Y: Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19: 6102-6114, 2000

    Google Scholar 

  12. Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Mol Cell Biol 2: 127-137, 2001

    Google Scholar 

  13. Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC, Sela M, Yarden Y: The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. P Natl Acad Sci USA 96: 4995-5000, 1999

    Google Scholar 

  14. Brennan PJ, Kumogai T, Berezov A, Murali R, Greene MI: HER2/neu: mechanisms of dimerization/oligomerization. Oncogene 9: 6093-6101, 2000

    Google Scholar 

  15. Waterman H, Yarden Y: Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett 490: 142-152, 2001

    Google Scholar 

  16. Schraml P, Kononen J, Bubendorf L, Moch H, Bissig H, Nocito A, Mihatsch MJ, Kallioniemi OP, Sauter G: Tissue microarrays for gene amplification surveys in many different tumor types. Clin Cancer Res 5: 1966-1975, 1999

    Google Scholar 

  17. Carter P: Improving the efficacy of antibody-based cancer therapies. Nat Cancer Rev 1: 118-131, 2001

    Google Scholar 

  18. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M: Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719-726, 2002

    Google Scholar 

  19. Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A, Panageas KS, Arroyo C, Valero V, Currie V, Gilewski T, Theodoulou M, Moynahan ME, Moasser M, Skalarin N, Dickler M, D'Andrea G, Cristofanilli M, Rivera E, Hortobagyi GN, Norton L, Hudis CA: Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 19: 2587-2595, 2001

    Google Scholar 

  20. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New Engl J Med 344: 783-792, 2001

    Google Scholar 

  21. Järvinen TAH, Liu ET: Novel cancer therapies targeted at the product of the HER-2/neu gene. Appl Genom Proteom 1: 3-14, 2002

    Google Scholar 

  22. Pignatelli M, Cortes-Canteli M, Lai C, Santos A, Perez-Castillo A: The peroxisome proliferator-activated receptor gamma is an inhibitor of ErbBs activity in human breast cancer cells. J Cell Sci 114: 4117-4126, 2001

    Google Scholar 

  23. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M: Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer I 93: 1852-1857, 2001

    Google Scholar 

  24. Albanell J, Baselga J: Unraveling resistance to trastuzumab (Herceptin): insulin-like growth factor-I receptor, a new suspect. J Natl Cancer I 93: 1830-1832, 2001

    Google Scholar 

  25. Knoop AS, Bentzen SM, Nielsen MM, Rasmussen BB, Rose C: Value of epidermal growth factor receptor, HER2, p53, and steroid receptors in predicting the efficacy of tamoxifen in high-risk postmenopausal breast cancer patients. J Clin Oncol 19: 3376-3384, 2001

    Google Scholar 

  26. Gusterson BA, Gelber RD, Goldhirsch A, Price KN, Save-Soderborgh J, Anbazhagan R, Styles J, Rudenstam CM, Golouh R, Reed R: Prognostic importance of c-erbB-2 expression in breast cancer. J Clin Oncol 10: 1049-1056, 1992

    Google Scholar 

  27. Allred DC, Clark GM, Tandon AK, Molina R, Tormey DC, Osborne CK, Gilchrist KW, Mansour EG, Abeloff M, Eudey L: HER-2/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol 10: 599-605, 1992

    Google Scholar 

  28. Thor AD, Berry DA, Budman DR, Muss HB, Kute T, Henderson IC, Barcos M, Cirrincione C, Edgerton S, Allred C, Norton L, Liu ET: ErbB-2, p53, and efficacy of adjuvant therapy in lymph node-positive breast cancer. J Natl Cancer I 90: 1346-1360, 1998

    Google Scholar 

  29. Paik S, Bryant J, Park C, Fisher B, Tan-Chiu E, Hyams D, Fisher ER, Lippman ME, Wickerham DL, Wolmark N: ErbB-2 and response to doxorubicin in patients with axillary lymph node-positive, hormone receptor-negative breast cancer. J Natl Cancer I 90: 1361-1370, 1998

    Google Scholar 

  30. Zujewski JA, Liu ET: The 1998 St. Gallen's Consensus Conference: an assessment. J Natl Cancer I 90: 1587-1589, 1998

    Google Scholar 

  31. McNeil C: Using HER2 to choose chemotherapy in breast cancer: is it ready for the clinic? J Natl Cancer I 91: 110, 1999

    Google Scholar 

  32. Clahsen PC, van de Velde CJH, Duval C, Pallud C, Mandard AM, Delobelle-Deroide A, van den Broek L, Sahmoud TM, van de Vijver MJ: p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with nodenegative early breast cancer. J Clin Oncol 16: 470-479, 1998

    Google Scholar 

  33. Di Leo A, Larsimont D, Gancberg D, Järvinen T, Beauduin M, Vindevoghel A, Michel J, Focan C, Ries F, Gobert P, Closon-Dejardin MT, Dolci S, Rouas G, Paesmans M, Lobelle JP, Isola J, Piccart MJ: HER-2 and topoisomerase IIα as predictive markers in a population of node-positive breast cancer patients randomly treated with adjuvant CMF or eprirubicin plus cyclophospamide. Ann Oncol 12: 1081-1089, 2001

    Google Scholar 

  34. Niskanen E, Blomqvist C, Franssila K, Hietanen P, Wasenius VM: Predictive value of c-erbB-2, p53, cathepsin-D and histology of the primary tumour in metastatic breast cancer. Br J Cancer 76: 917-922, 1997

    Google Scholar 

  35. Sjöstrom J, Krajewski S, Franssila K, Niskanen E, Wasenius VM, Nordling S, Reed JC, Blomqvist C: A multivariate analysis of tumour biological factors predicting response to cytotoxic treatment in advanced breast cancer. Br J Cancer 78: 812-815, 1998

    Google Scholar 

  36. Rozan S, Vincent-Salomon A, Zafrani B, Validire P, De Cremoux P, Bernoux A, Nieruchalski M, Fourquet A, Clough K, Dieras V, Pouillart P, Sastre-Garau X: No significant predictive value of c-erbB-2 or p53 expression regarding sensitivity to primary chemotherapy or radiotherapy in breast cancer. Int J Cancer 79: 27-33, 1998

    Google Scholar 

  37. Clahsen PC, van de Velde CJ, Duval C, Pallud C, Mandard AM, Delobelle-Deroide A, van den Broek L, Sahmoud TM, van de Vijver MJ: p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with nodenegative early breast cancer. J Clin Oncol 16: 470-479, 1998

    Google Scholar 

  38. MacGrogan G, Mauriac L, Durand M, Bonichon F, Trojani M, de Mascarel I, Coindre JM: Primary chemotherapy in breast invasive carcinoma: predictive value of the immunohistochemical detection of hormonal receptors, p53, c-erbB-2, MiB1, pS2 and GST?. Br J Cancer 74: 1458-1465, 1996

    Google Scholar 

  39. Järvinen TAH, Holli K, Kuukasjärvi T, Isola J: Predictive value of topoisomerase II? and other prognostic factors for epirubicin chemotherapy in advanced breast cancer. Br J Cancer 77: 2267-2273, 1998

    Google Scholar 

  40. Tetu B, Brisson J, Plante V, Bernard P: p53 and c-erbB-2 as markers of resistance to adjuvant chemotherapy in breast cancer. Modern Pathol 11: 823-830, 1998

    Google Scholar 

  41. Chang J, Powles TJ, Allred DC, Ashley SE, Clark GM, Makris A, Assersohn L, Gregory RK, Osborne CK, Dowsett M: Biological markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer. J Clin Oncol 17: 3058-3063, 1999

    Google Scholar 

  42. Pegram MD, Finn RS, Arzoo K, Beryt M, Pietras RJ, Slamon DJ: The effect of HER-2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 15: 537-547, 1997

    Google Scholar 

  43. Orr MS, O'Connor PM, Kohn KW: Effects of c-erbB2 overexpression on the drug sensitivities of normal human mammary epithelial cells. J Natl Cancer I 92: 987-994, 2000

    Google Scholar 

  44. Pauletti G, Dandekar S, Rong H, Ramos L, Peng HJ, Seshadri R, Slamon DJ: Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18: 3651-3664, 2000

    Google Scholar 

  45. Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ: Comparison of fluorescence in situ hybridization and immunohistochemistry for the evaluation of HER-2/neu in breast cancer. J Clin Oncol 17: 1974-1982, 1999

    Google Scholar 

  46. Gancberg D, Järvinen T, Di Leo A, Rouas G, Cardoso F, Paesmans M, Verhest A, Piccart MJ, Isola J, Larsimont D: Evaluation of HER-2/NEU protein expression in breast cancer by immunohistochemistry: an interlaboratory study assessing the reproducibility of HER-2/NEU testing. Breast Cancer Res Tr 74: 113-120, 2002

    Google Scholar 

  47. Press MF, Slamon DJ, Flom KJ, Park J, Zhou JY, Bernstein L: Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens. J Clin Oncol 20: 3095-3105, 2002

    Google Scholar 

  48. van de Vijver MJ, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R: Amplification of the neu (c-ERBB2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol 7: 2019-2023, 1987

    Google Scholar 

  49. Smith K, Houlbrook S, Greenall M, Carmichael J, Harris AL: Topoisomerase II? co-amplification with erbB2 in human primary breast cancer and breast cancer cell lines: relationship to m-AMSA and mitoxantrone sensitivity. Oncogene 8: 933-938, 1993

    Google Scholar 

  50. Keith WN, Douglas F, Wishart GC, McCallum HM, George WD, Kaye SB, Brown R: Co-amplification of erbB2, topoisomerase II? and retinoid acid receptor α genes in breast cancer and allelic loss at topoisomerase I on chromosome 20. Eur J Cancer 29A: 1469-1475, 1993

    Google Scholar 

  51. Bièche I, Tomasetto C, Régnier CH, Moog-Lutz C, Rio M-C, Lidereau R: Two distinct amplified regions at 17q11-q21 involved in human primary breast cancer. Cancer Res 56: 3886-3890, 1996

    Google Scholar 

  52. Vidgren V, Varis A, Kokkola A, Monni O, Puolakkainen P, Nordling S, Forozan F, Kallioniemi A, Vakkari ML, Kivilaakso E, Knuutila S: Concomitant gastrin and ERBB2 gene amplifications at 17q12-q21 in the intestinal type of gastric cancer. Gene Chromosome Canc 24: 24-29, 1999

    Google Scholar 

  53. Zhu Y, Qi C, Jain S, Le Beau MM, Espinosa 3rd R, Atkins GB, Lazar MA, Yeldandi AV, Rao MS, Reddy JK: Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. P Natl Acad Sci USA 96: 10848-10853, 1999

    Google Scholar 

  54. Järvinen TAH, Tanner M, Barlund M, Borg Å, Isola J: Characterization of topoisomerase IIα amplification and deletion in breast cancer. Gene Chromosome Canc 26: 142-150, 1999

    Google Scholar 

  55. Järvinen TAH, Tanner M, Rantanen V, Bärlund M, Borg Å, Grénman S: Amplification and deletion of topoisomerase IIα gene are common in ErbB-2 amplified breast cancer and alter the sensitivity to doxorubicin. Am J Pathol 156: 839-847, 2000

    Google Scholar 

  56. Lehmann U, Glockner S, Kleeberger W, von Wasielewski HF, Kreipe H: Detection of gene amplification in archival breast cancer specimens by laser-assisted microdissection and quantitative real-time polymerase chain reaction. Am J Pathol 156: 1855-1864, 2000

    Google Scholar 

  57. Glöckner S, Lehmann U, Wilke N, Kleeberger W, Länger F, Kreipe H: Amplification of growth regulatory genes in intraductal breast cancer is associated with higher nuclear grade but not with the progression to invasiveness. Lab Invest 81: 565-571, 2001

    Google Scholar 

  58. Forozan F, Mahlamaki EH, Monni O, Chen Y, Veldman R, Jiang Y, Gooden GC, Ethier SP, Kallioniemi A, Kallioniemi OP: Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res 60: 4519-4525, 2000

    Google Scholar 

  59. Kauraniemi P, Bärlund M, Monni O, Kallioniemi A: New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. Cancer Res 61: 8235-8240, 2001

    Google Scholar 

  60. Skotheim RI, Monni O, Mousses S, Fossa SD, Kallioniemi OP, Lothe RA, Kallioniemi A: New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Res 62: 2359-2364, 2002

    Google Scholar 

  61. Varis A, Wolf M, Monni O, Vakkari ML, Kokkola A, Moskaluk C, Frierson Jr H, Powell SM, Knuutila S, Kallioniemi A, El-Rifai W: Targets of gene amplification and overexpression at 17q in gastric cancer. Cancer Res 62: 2625-2629, 2002

    Google Scholar 

  62. Luoh SW: Amplification and expression of genes from the 17q11 approximately q12 amplicon in breast cancer cells. Cancer Genet Cytogen 136: 43-47, 2002

    Google Scholar 

  63. Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, Rozenblum E, Ringner M, Sauter G, Monni O, Elkahloun A, Kallioniemi OP, Kallioniemi A: Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62: 6240-6245, 2002

    Google Scholar 

  64. Gunnarsson C, Ahnström M, Kirschner K, Olsson B, Nordenskjöld B, Rutqvist LE, Skoog L, Stål O: Amplification of HSD17B1 and ERBB2 in primary breast cancer. Oncogene 22: 34-40, 2003.

    Google Scholar 

  65. Durbecq V, Di Leo A, Cardoso F, Rouas G, Leroy JY, Piccart M, Larsimont D: Comparison of topoisomerase-IIα gene status between primary breast cancer and corresponding distant metastatic sites. Breast Cancer Res Treat 77: 199-204, 2003

    Google Scholar 

  66. Oh JJ, Grosshans DR, Wong SG, Slamon DJ: Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells. Nucleic Acids Res 27: 4008-4017, 2000

    Google Scholar 

  67. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL: HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21: 3995-4004, 2001

    Google Scholar 

  68. Wang JC: DNA topoisomerases. Annu Rev Biochem 65: 635-692, 1996

    Google Scholar 

  69. Osheroff N: DNA topoisomerases. Biochim Biophys Acta 1400: 1-2, 1998

    Google Scholar 

  70. Järvinen T: Topoisomerase II? in breast cancer. Acta Universitatis Tamperensis 686: 1-86, 1999

    Google Scholar 

  71. Kellner U, Sehested M, Jensen PB, Gieseler F, Rudolph P: Culprit and victim-DNA topoisomerase II. Lancet Oncol 3: 235-243, 2002

    Google Scholar 

  72. Meyer KN, Kjeldsen E, Straub T, Knudsen BR, Hickson ID, Kikuchi A, Kreipe H, Boege F: Cell cycle-coupled relocation of types I and II topoisomerases of catalytic enzyme activities. J Cell Biol 136: 775-778, 1997

    Google Scholar 

  73. Isaacs RJ, Davies SL, Sandri MI, Redwood C, Wells NJ, Hickson ID: Physiological regulation of eukaryotic topoisomerase II. Biochim Biophys Acta 1400: 121-137, 1998

    Google Scholar 

  74. Yang X, Li W, Prescott ED, Burden SJ, Wang JC: DNA topoisomerase IIβ and neural development. Science 287: 131-134, 2000

    Google Scholar 

  75. Gudkov AV, Zelnick CR, Kazarov AR, Thimmapaya R, Suttle DP, Beck WT, Roninson IB: Isolation of genetic suppressor elements, inducing resistance to topoisomerase II-interactive cytotoxic drugs, from human topoisomerase II cDNA. P Natl Acad Sci USA 90: 3231-3235, 1993

    Google Scholar 

  76. Asano T, An T, Mayes J, Zwelling LA, Kleinerman ES: Transfection of human topoisomerase IIα into etoposide-resistant cells: transient increase in sensitivity followed by downregulation of the endogenous gene. Biochem J 319: 307-313, 1996

    Google Scholar 

  77. Asano T, Zwelling LA, An T, McWatters A, Herzog CE, Mayes J, Loughlin SM, Kleinerman ES: Effect of transfection of a Drosophila topoisomerase II gene into a human brain tumour cell line intrinsically resistant to etoposide. Br J Cancer 73: 1373-1380, 1996

    Google Scholar 

  78. Vassetzky YS, Alghisi G-C, Roberts E, Gasser SM: Ectopic expression of inactive forms of yeast DNA topoisomerase II confers resistance to the anti-tumour drug-etoposide. Br J Cancer 73: 1201-1209, 1996

    Google Scholar 

  79. Withoff S, Keith WN, Knol AJ, Coutts JC, Hoare SF, Mulder NH, de Vries EG: Selection of a subpopulation with fewer DNA topoisomerase IIα gene copies in a doxorubicin-resistant cell line panel. Br J Cancer 74: 502-507, 1996

    Google Scholar 

  80. Withoff S, de Vries EG, KeithWN, Nienhuis EF, van der Graaf WT, Uges DR, Mulder NH: Differential expression of DNA topoisomerase IIα and-β in P-gp and MRP-negative VM26, mAMSA and mitoxantrone-resistant sublines of the human SCLC cell line GLC. Br J Cancer 74: 1869-1876, 1996

    Google Scholar 

  81. Zhou Z, Zwelling LA, Kawakami Y, An T, Kobayashi K, Herzog C, Kleinerman ES: Adenovirus-mediated human topoisomerase IIα gene transfer increases the sensitivity of etoposide-resistant human breast cancer cells. Cancer Res 59: 4618-4624, 1999

    Google Scholar 

  82. Järvinen TAH, Kononen J, Pelto-Huikko M, Isola J: High expression of topoisomerase IIα is associated with high proliferation rate, low hormone receptor content and overexpression of oncogene c-erbB-2 in breast cancer. Am J Pathol 148: 2073-2082, 1996

    Google Scholar 

  83. Sandri MI, Hochhauser D, Ayton P, Camplejohn RC, Whitehouse R, Turley H, Gatter K, Hickson ID, Harris AL: Differential expression of topoisomerase IIα and IIβ genes in human breast cancer. Br J Cancer 73: 1518-1524, 1996

    Google Scholar 

  84. Rudolph P, Olsson H, Bonatz G, Ratjen V, Bolte H, Baldetorp B, Ferno M, Parwaresch R, Alm P: Correlation between p53, c-erbB-2, and topoisomerase IIα expression, DNA ploidy, hormonal receptor status and proliferation in 356 node-negative breast carcinomas: prognostic implications. J Pathol 187: 207-216, 1999

    Google Scholar 

  85. Wikman H, Kettunen E, Seppanen JK, Karjalainen A, Hollmen J, Anttila S, Knuutila S: Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 21: 5804-5813, 2002

    Google Scholar 

  86. Tanner M, Järvinen TAH, Kauraniemi P, Holli K, Joensuu H: Topoisomerase IIα amplification and deletion predict response to chemotherapy in breast cancer. P Am Assoc Canc Res 41: 803, Abstract, 2000

    Google Scholar 

  87. Di Leo A, Gancberg D, Larsimont D, Tanner M, Järvinen T, Rouas G, Dolci S, Paesmans M, Isola J, Piccart MJ: HER-2 amplification and topoisomerase IIα gene aberrations as predictive markers in node-positive breast cancer patients randomly treated either with an anthracycline-based therapy or with CMF. Clin Cancer Res 8: 1107-1116, 2002

    Google Scholar 

  88. Coon JS, Marcus E, Gupta-Burt S, Seelig S, Jacobson K, Chen S, Renta V, Fronda G, Preisler H: Amplification and overexpression of topoisomerase IIα predict response to anthracycline-based therapy in locally advanced breast cancer. Clin Cancer Res 8: 1061-1067, 2002

    Google Scholar 

  89. Harris LN, Yang L, Liotcheva V, Pauli S, Iglehart JD, Colvin OM, Hsieh TS: Induction of topoisomerase II activity after ErbB2 activation is associated with differential response to breast cancer chemotherapy. Clin Cancer Res 7: 1497-1504, 2001

    Google Scholar 

  90. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, Baly D, Baughman SA, Twaddell T, Glaspy JA, Slamon DJ: Phase II study of receptorenhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 16: 2659-2671, 1998

    Google Scholar 

  91. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M, Coombs D, Baly D, Kabbinavar F, Slamon D: Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18: 2241-2251, 1999

    Google Scholar 

  92. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L, Wolter JM, Paton V, Shak S, Lieberman G, Slamon DJ: Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17: 2639-2648, 1999

    Google Scholar 

  93. Järvinen TAH, Liu ET: HER-2/neu and topoisomerase IIα genes, simultaneous targets for chemotherapy. Comb Chem High T Scr (in press)

  94. Sjöstrom J. Predictive factors for response to chemotherapy in advanced breast cancer. Acta Oncol 41: 334-345, 2002

    Google Scholar 

  95. Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol 12(Suppl 1): S3-S8, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Järvinen, T.A., Liu, E.T. Her-2/neu and Topoisomerase iiα in Breast Cancer. Breast Cancer Res Treat 78, 299–311 (2003). https://doi.org/10.1023/A:1023077507295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023077507295

Navigation