Skip to main content
Log in

CD44 in Cancer Progression: Adhesion, Migration and Growth Regulation

  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell–cell and cell–matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself.

Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task.

This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens T, Sleeman JP, Schempp CM, Howells N, Hofmann M, Ponta H, Herrlich P, Simon JC (2001) Soluble CD44 inhibits melanoma tumor growth by blocking cell surface CD44 binding to hyaluronic acid. Oncogene 20: 3399–3408.

    Google Scholar 

  • Akiyama Y, Jung S, Salhia B, Lee S, Hubbard S, Taylor M, Mainprize T, Akaishi K, van Furth W, Rutka JT (2001) Hyaluronate receptors mediating glioma cell migration and proliferation. J Neurooncol 53: 115–127.

    Google Scholar 

  • Allenspach EJ, Cullinan P, Tong J, Tang Q, Tesciuba AG, Cannon JL, Takahashi SM, Morgan R, Burkhardt JK, Sperling AI (2001) ERM-dependent movement of CD43 defines a novel protein complex distal to the immunological synapse. Immunity 15: 739–750.

    Google Scholar 

  • Allouche M, Charrad RS, Bettaieb A, Greenland C, Grignon C, Smadja-Joffe F (2000) Ligation of the CD44 adhesion molecule inhibits drug-induced apoptosis in human myeloid leukemia cells. Blood 96: 1187–1190.

    Google Scholar 

  • Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K (1999) The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem 274: 32418–32424.

    Google Scholar 

  • Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K (2001) LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem J 354: 149–159.

    Google Scholar 

  • Arch R, Wirth K, Hofmann M, Ponta H, Matzku S, Herrlich P, Zöller M (1992) Participation of a metastasis-inducing splice variant of CD44 in normal immune response. Science 257: 682–685.

    Google Scholar 

  • Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61: 1303–1313.

    Google Scholar 

  • Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, Rittling SR, Denhardt DT, Glimcher MJ, Cantor H(2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287: 860–864.

    Google Scholar 

  • Atkins K, Berry JE, Zhang WZ, Harris JF, Chambers AF, Simpson RU, Somerman MJ (1998) Coordinate expression of OPN and associated receptors during monocyte/macrophage differentiation of HL-60 cells. J Cell Physiol 175: 229–237.

    Google Scholar 

  • Ayroldi E, Cannarile L, Migliorati G, Bartoli A, Nicoletti I, Riccardi C (1995) CD44 (Pgp-1) inhibits CD3 and dexamethasone-induced apoptosis. Blood 86: 2672–2678.

    Google Scholar 

  • Bajorath J, Greenfield B, Munro SB, Day AJ, Aruffo A (1998) Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J Biol Chem 273: 338–343.

    Google Scholar 

  • Bandorowicz-Pikula J (2000) Lipid-binding proteins as stabilizers of membrane microdomains – possible physiological significance. Acta Biochim Pol 47: 553–564.

    Google Scholar 

  • Banerji S, Day AJ, Kahmann JD, Jackson DG (1998) Characterization of a functional hyaluronan-binding domain from the human CD44 molecule expressed in Escherichia coli. Protein Expr Purif 14: 371–381.

    Google Scholar 

  • Bates RC, Edwards NS, Burns GF, Fisher DE (2001) A CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells. Cancer Res 61: 5275–5283.

    Google Scholar 

  • Bates RC, Elith CA, Thorne RF, Burns GF (1998) Engagement of variant CD44 confers resistance to anti-integrin antibody-mediated apoptosis in a colon carcinoma cell line. Cell Adhes Commun 6: 21–38.

    Google Scholar 

  • Bennett KL, Jackson DG, Simon JC, Tanczos E, Peach R, Modrell B, Stamenkovic I, Plowman G, Aruffo A (1995) CD44 isoforms contain-ing exon v3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol 128: 687–698.

    Google Scholar 

  • Berditchevski F, Odintsova E, Sawada S, Gilbert E (2002) Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem 277: 36991–37000.

    Google Scholar 

  • Berg EL, Goldstein LA, Jutila MA, Nakache M, Picker LP, Streeter PR, Wu NW, Zhou D, Butcher EC (1989) Homing receptors and vascular addressins: Cell adhesion molecules that direct lymphocyte traffic. Immunol Rev 108: 5–18.

    Google Scholar 

  • Bewarder N, Weinrich V, Budde P, Hartmann D, Flaswinkel H, Reth M, Frey J (1996) In vivo and in vitro specificity of protein tyrosine kinases for immunoglobulin G receptor (FcgammaRII) phosphorylation. Mol Cell Biol 16: 4735–4743.

    Google Scholar 

  • Bono P, Rubin K, Higgins JM, Hynes RO (2001) Layilin, a novel inte-gral membrane protein, is a hyaluronan receptor. Mol Biol Cell 12: 891–900.

    Google Scholar 

  • Bosworth BT, St John T, Gallatin WM, Harp JA (1991) Sequence of the bovine CD44 cDNA: Comparison with human and mouse sequences. Mol Immunol 28: 1131–1135.

    Google Scholar 

  • Bourguignon LY, Jin H (1995) Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2 +release. J Biol Chem 270: 7257–7260.

    Google Scholar 

  • Bourguignon LY, Gunja-Smith Z, Iida N, Zhu HB, Young LJ, Muller WJ, Cardiff RD (1998) CD44v(3,8–10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol 176: 206–215.

    Google Scholar 

  • Bourguignon LY, Kalomiris EL, Lokeshwar VB (1991) Acylation of the lymphoma transmembrane glycoprotein, GP85, may be required for GP85-ankyrin interaction. J Biol Chem 266: 11761–11765.

    Google Scholar 

  • Bourguignon LY, Singleton PA, Zhu H, Zhou B (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277: 39703–39712.

    Google Scholar 

  • Bourguignon LY, Zhu H, Chu A, Iida N, Zhang L, Hung MC (1997) Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem 272: 27913–27918.

    Google Scholar 

  • Bourguignon LY, Zhu H, Shao L, Zhu D, Chen YW (1999) Rho-kinase (ROK) promotes CD44v(3,8–10)-ankyrin interaction and tumor cell migration in metastatic breast cancer cells. Cell Motil Cytoskeleton 43: 269–287.

    Google Scholar 

  • Bourguignon LY, Zhu H, Shao L, Chen YW(2000) CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J Biol Chem 275: 1829–1838.

    Google Scholar 

  • Bourguignon LY, Zhu H, Shao L, Chen YW (2001a) CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 276: 7327–7336.

    Google Scholar 

  • Bourguignon LY, Zhu H, Zhou B, Diedrich F, Singleton PA, Hung MC (2001b) Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem 276: 48679–48692.

    Google Scholar 

  • Brennan FR, Mikecz K, Glant TT, Jobanputra P, Pinder S, Bavington C, Morrison P, Nuki G (1997) CD44 expression by leucocytes in rheuma-toid arthritis and modulation by specific antibody: Implications for lymphocyte adhesion to endothelial cells and synoviocytes in vitro. Scand J Immunol 45: 213–220.

    Google Scholar 

  • Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: Integrators at the cell cortex. Nat Rev Mol Cell Biol 3: 586–599.

    Google Scholar 

  • Brooks PC, Stromblad S, Sanders LC, von Schalscha TL, Aimes RT, Stetler-Stevenson WG, Quigley JP, Cheresh DA (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85: 683–693.

    Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111–136.

    Google Scholar 

  • Brown TA, Bouchard T, St John T, Wayner E, Carter WG (1991) Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol 113: 207–221.

    Google Scholar 

  • Camp RL, Kraus TA, Pure E (1991) Variations in the cytoskeletal inter-action and posttranslational modification of the CD44 homing receptor in macrophages. J Cell Biol 115: 1283–1292.

    Google Scholar 

  • Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M (1999) Akinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401: 286–290.

    Google Scholar 

  • Carter WG, Wayner EA (1988) Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J Biol Chem 263: 4193–4201.

    Google Scholar 

  • Charrad RS, Gadhoum Z, Qi J, Glachant A, Allouche M, Jasmin C, Chomienne C, Smadja-Joffe F (2002) Effects of anti-CD44 mono-clonal antibodies on differentiation and apoptosis of human myeloid leukemia cell lines. Blood 99: 290–299.

    Google Scholar 

  • Charrad RS, Li Y, Delpech B, Balitrand N, Clay D, Jasmin C, Chomienne C, Smadja-Joffe F (1999) Ligation of CD44 adhesion molecules reverses blockade of differentiation in human acute myelod leukemia. Nature Med 5: 669–676.

    Google Scholar 

  • Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E (2002) Differential stability of tetraspanin/tetraspanin interactions: Role of palmitoylation. FEBS Lett 516: 139–144.

    Google Scholar 

  • Chen D, McKallip RJ, Zeytun A, Do Y, Lombard C, Robertson JL, Mak TW, Nagarkatti PS, Nagarkatti M (2001) CD44-deficient mice exhibit enhanced hepatitis after concanavalin A injection: Evidence for involvement of CD44 in activation-induced cell death. J Immunol 166: 5889–5897.

    Google Scholar 

  • Cichy J, Pure E (2003) The liberation of CD44. J Cell Biol 161: 839–843.

    Google Scholar 

  • Clark EA, Brugge JS (1995) Integrins and signal transduction pathways: The road taken. Science 268: 233–239.

    Google Scholar 

  • Collins TL, Deckert M, Altman A (1997) Views on Vav. Immunol Today 18: 221–225.

    Google Scholar 

  • Cooper DL, Dougherty G, Harn HJ, Jackson S, Baptist EW, Byers J, Datta A, Phillips G, Isola NR (1992) The complex CD44 transcrip-tional unit; alternative splicing of three internal exons generates the epithelial form of CD44. Biochem Biophys Res Commun 182: 569–578.

    Google Scholar 

  • Courtneidge SA, Dhand R, Pilat D, Twamley GM, Waterfield MD, Roussel MF (1993) Activation of Src family kinases by colony stim-ulating factor-1, and their association with its receptor. EMBO J 12: 943–950.

    Google Scholar 

  • Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR (1997) Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385: 169–172.

    Google Scholar 

  • Culty M, Miyake K, Kincade PW, Silorski E, Butcher EC, Underhill C, Sikorski E (1990) The hyaluronate receptor is a member of the CD44 (H-CAM) family of cell surface glycoproteins. J Cell Biol 111: 2765–2774.

    Google Scholar 

  • Culty M, Nguyen HA, Underhill CB (1992) The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol 116: 1055–1062.

    Google Scholar 

  • Cuppen E, Wijers M, Schepens J, Fransen J, Wieringa B, Hendriks W (1999) A FERM domain governs apical confinement of PTP-BL in epithelial cells. J Cell Sci 112: 3299–3308.

    Google Scholar 

  • Cywes C, Wessels MR (2001) Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 414: 648–652.

    Google Scholar 

  • Das V, Nal B, Roumier A, Meas-Yedid V, Zimmer C, Olivo-Marin JC, Roux P, Ferrier P, Dautry-Varsat A, Alcover A (2002) Membrane– cytoskeleton interactions during the formation of the immunological synapse and subsequent T-cell activation. Immunol Rev 189: 123–135.

    Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.

    Google Scholar 

  • Day AJ, Sheehan JK (2001) Hyaluronan: Polysaccharide chaos to protein organisation. Curr Opin Struct Biol 11: 617–622.

    Google Scholar 

  • DeGrendele HC, Estess P, Picker LJ, Siegelman MH (1996) CD44 and its ligand hyaluronate mediate rolling under physiologic flow: A novel lymphocyte–endothelial cell primary adhesion pathway. J Exp Med 183: 1119–1130.

    Google Scholar 

  • DeGrendele HC, Estess P, Siegelman MH(1997) Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 278: 672–675.

    Google Scholar 

  • Delon J, Kaibuchi K, Germain RN (2001) Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15: 691–701.

    Google Scholar 

  • Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS (2001) Osteo-pontin as a means to cope with environmental insults: Regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107: 1055–1061.

    Google Scholar 

  • Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL (2000) Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell 6: 1425–1436.

    Google Scholar 

  • Desiderio S (1994) The B cell antigen receptor in B-cell development. Curr Opin Immunol 6: 248–256.

    Google Scholar 

  • Dianzani U, Bragardo M, Tosti A, Ruggeri L, Volpi I, Casucci M, Bottarel F, Feito MJ, Bonissoni S, Velardi A (1999) CD44 signaling through p56lck involves lateral association with CD4 in human CD4 +T cells. Int Immunol 11: 1085–1092.

    Google Scholar 

  • Dianzani U, Malavasi F (1995) Lymphocyte adhesion and endothelium. Crit Rev Immunol 15: 167–200.

    Google Scholar 

  • Dumler I, Weis A, Mayboroda OA, Maasch C, Jerke U, Haller H, Gulba DC (1998) The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth muscle cells. J Biol Chem 273: 315–321.

    Google Scholar 

  • Dykstra ML, Cherukuri A, Pierce SK (2001) Floating the raft hypothesis for immune receptors: Access to rafts controls receptor signaling and trafficking. Traffic 2: 160–166.

    Google Scholar 

  • Estess P, Nandi A, Mohamadzadeh M, Siegelman MH (1999) Interleukin 15 induces endothelial hyaluronan expression in vitro and promotes activated T cell extravasation through a CD44-dependent pathway in vivo. J Exp Med 190: 9–19.

    Google Scholar 

  • Föger N, Marhaba R, Zöller M (2000) Costimulatory function of CD44 in T cell proliferation and apoptosis. Eur J Immunol 30: 2888–2899.

    Google Scholar 

  • Föger N, Marhaba R, Zöller M (2001) Raft associated interaction of CD44 with the cytoskele. J Cell Sci 114: 1169–1178.

    Google Scholar 

  • Fox SB, Fawcett J, Jackson DG, Collins I, Gatter KC, Harris AL, Gearing A, Simmons DL (1994) Normal human tissues, in addition to some tumors, express multiple different CD44 isofo. Cancer Res 54: 4539–4546.

    Google Scholar 

  • Freyschmidt-Paul P, Seiter S, Zöller M, Sundberg JP, Happle R, Hoffmann R (2000) Anti-CD44v10 strongly inhibits alopecia areata-like hair loss in C3H/HeJ m. J Invest Dermatol 115: 653–657.

    Google Scholar 

  • Fujita Y, Kitagawa M, Nakamura S, Azuma K, Ishii G, Higashi M, Kishi H, Hiwasa T, Koda K, Nakajima N, Harigaya K (2002) CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett 528: 101–108.

    Google Scholar 

  • Fukata Y, Oshiro N, Kinoshita N, Kawano Y, Matsuoka Y, Bennett V, Matsuura Y, Kaibuchi K (1999) Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Cell Biol 145: 347–361.

    Google Scholar 

  • Gal I, Lesley J, Ko W, Gonda A, Stoop R, Hyman R, Mikecz K (2003) Role of the extracellular and cytoplasmic domains of CD44 in the rolling interaction of lymphoid cells with hyaluronan under physiologic flow. J Biol Chem 278: 11150–11158.

    Google Scholar 

  • Galandrini R, Albi N, Tripodi G, Zarcone D, Terenzi A, Moretta A, Grossi CE, Velardi A (1993) Antibodies to CD44 trigger effector functions of human T cell clones. J Immunol 150: 4225–4235.

    Google Scholar 

  • Galandrini R, Piccoli M, Frati L, Santoni A (1996) Tyrosine kinase-dependent activation of human NK cell functions upon triggering through CD44 receptor. Eur J Immunol 26: 2807–2811.

    Google Scholar 

  • Gallatin WM, Weissman IL, Butcher EC (1983) A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304: 30–34.

    Google Scholar 

  • Gautreau A, Louvard D, Arpin M (2002) ERM proteins and NF2 tumor suppressor: The Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol 14: 104–109.

    Google Scholar 

  • Ghaffari S, Dougherty GJ, Eaves AC, Eaves CJ (1999a) Diverse effects of anti-CD44 antibodies on the stromal cell-mediated support of normal but not leukemic (CML) haemopoiesis in vitro. Br J Haematol 97: 22–28.

    Google Scholar 

  • Ghaffari S, Smadja-Joffe F, Ooostendorp R, Levelsque JP, Dougherty G, Eaves A, Eaves C (1999b) CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 27: 978–993.

    Google Scholar 

  • Ghatak S, Misra S, Toole BP (2002) Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phos-phoinositide 3-kinase/Akt cell survival pathway. J Biol Chem 277: 38013–38020.

    Google Scholar 

  • Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M (1998) Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol 152: 353–358.

    Google Scholar 

  • Goldstein LA, Butcher EC (1990) Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics 32: 389–397.

    Google Scholar 

  • Goldstein LA, Zhou DFH, Picker LJ, Minty CN, Bargatze RF, Ding JF, Butcher EC (1989) A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 56: 1063–1072.

    Google Scholar 

  • Goshen R, Ariel I, Shuster S, Hochberg A, Vloavsky I, deGroot N, Ben-Rafael Z, Stern R (1996) Hyaluronan, CD44 and its variant exons in human trophoblast invasion and placental angiogenesis. Mol Hum Reprod 2: 685–691.

    Google Scholar 

  • Greenfield B, Wang WC, Marquardt H, Piepkorn M, Wolff EA, Aruffo A, Bennett KL (1999) Characterization of the heparan sulfate and chon-droitin sulfate assembly sites in CD44. J Biol Chem 274: 2511–2517.

    Google Scholar 

  • Günthert U (1993) CD44: Amultitude of isoforms with diverse functions. Curr Top Microbiol Immunol 184: 47–73.

    Google Scholar 

  • Günthert U, Hofman M, Rudy W, Reber S, Zöller M, Haußmann I, Matzku S, Wenzel A, Ponta H, Herrlich P (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65: 13–24.

    Google Scholar 

  • Günthert U, Schwärzler C, Wittig B, Laman J, Ruiz P, Stauder R, Bloem A, Smadja-Joffe F, Zöller M, Rolink A (1998) Functional involvement of CD44, a family of cell adhesion molecules, in immune responses, tumour progression and haematopoiesis. Adv Exp Med Biol 451: 43–49.

    Google Scholar 

  • Guy R, Yefenof E, Naor D, Dorogin A, Zilberman Y (2002) CD44 co-stimulates apoptosis in thymic lymphomas and T cell hybridomas. Cell Immunol 216: 82–92.

    Google Scholar 

  • Haggerty JG, Bretton RH, Milstone LM (1992) Identification and char-acterization of a cell surface proteoglycan on keratinocytes. J Invest Dermatol 99: 374–380.

    Google Scholar 

  • Harder T (2003) Formation of functional cell membrane domains: The interplay of lipid-and protein-mediated interactions. Philos Trans R Soc Lond B Biol Sci 358: 863–868.

    Google Scholar 

  • Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid–cholesterol microdomains. Curr Opin Cell Biol 9: 534–542.

    Google Scholar 

  • Hardingham TE, Fosang AJ (1992) Proteoglycans: Many forms and many functions. FASEB J 6: 861–870.

    Google Scholar 

  • Harris TJ, Siu CH (2002) Reciprocal raft–receptor interactions and the assembly of adhesion complexes. Bioessays 24: 996–1003.

    Google Scholar 

  • Hartmann G, Prospero T, Brinkmann V, Ozcelik C, Winter G, Hepple J, Batley S, Bladt F, Sachs M, Birchmeier C, Birchmeier W, Gherardi E, Ozcelik O (1998) Engineered mutants of HGF/SF with reduced binding to heparan sulphate proteoglycans, decreased clearance and enhanced activity in vivo. Curr Biol 8: 125–134.

    Google Scholar 

  • Haynes BF, Liao HX, Patton KL (1991) The transmembrane hyaluronate receptor (CD44): Multiple functions, multiple forms. Cancer Cells 3: 347–350.

    Google Scholar 

  • He Q, Lesley J, Hyman R, Ishihara K, Kincade PW (1992) Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition. J Cell Biol 119: 1711–1719.

    Google Scholar 

  • Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A, Carpen O (1998) Association of ezrin with intercellular adhesion molecule-1 and-2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273: 21893–21900.

    Google Scholar 

  • Henke C, Bitterman P, Roongta U, Ingbar D, Polunovsky V (1996) Induction of fibroblast apoptosis by anti-CD44 antibody: Implications for the treatment of fibroproliferative lung disease. Am J Pathol 149: 1639–1650.

    Google Scholar 

  • Herrlich P, Zöller M, Pals ST, Ponta H (1993) CD44 splice variants: Metastases meet lymphocytes. Immunol Today 14: 395–399.

    Google Scholar 

  • Hirano H, Screaton GR, Bell MV, Jackson DG, Bell JI, Hodes RJ (1994) CD44 isoform expression mediated by alternative splicing: Tissue-specific regulation in mice. Int Immunol 6: 49–59.

    Google Scholar 

  • Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, Nasir-Ud D (2000) Signaling through sphingolipid microdomains of the plasma membrane: The concept of signaling platform. Glycoconj J 17: 191–197.

    Google Scholar 

  • Hofmann M, Rudy W, Günthert U, Zimmer SG, Zawadzki V, Zöller M, Lichtner RB, Herrlich P, Ponta H (1993) A link between ras and metastatic behavior of tumor cells: Ras induces CD44 promoter activity and leads to low-level expression of metastasis-specific variants of CD44 in CREF cells. Cancer Res 53: 1516–1521.

    Google Scholar 

  • Howe LR, Weiss A (1995) Multiple kinases mediate T-cell-receptor signaling. Trends Biochem Sci 20: 59–64.

    Google Scholar 

  • Hudson DL, Sleeman J, Watt FM(1995) CD44 is the major peanut lectin-binding glycoprotein of human epidermal keratinocytes and plays a role in intercellular adhesion. J Cell Sci 108: 1959–1970.

    Google Scholar 

  • Hughes EN, Colombatti A, August JT (1981) Murine cell surface glycoproteins. J Biol Chem 256: 1014–1021.

    Google Scholar 

  • Hurt-Camejo E, Rosengren B, Sartipy P, Elfsberg K, Camejo G, Svensson L (1999) CD44, a cell surface chondroitin sulfate proteo-glycan, mediates binding of interferon-gamma and some of its biolog-ical effects on human vascular smooth muscle cells. J Biol Chem 274: 18957–18964.

    Google Scholar 

  • Idzerda RL, Carter WG, Nottenburg C, Wayner EA, Gallatin WM, St John T (1989) Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proc Natl Acad Sci USA 86: 4659–4663.

    Google Scholar 

  • Ikonen E, Simons K(1998) Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Semin Cell Dev Biol 9: 503–509.

    Google Scholar 

  • Ilangumaran S, Briol A, Hoessli DC (1998) CD44 selectively associates with active Src family protein tyrosine kinases Lck and Fynin glycosphingolipid-rich plasma membrane domains of human peripheral blood lymphocytes. Blood 91: 3901–3908.

    Google Scholar 

  • Isacke CM(1994) The role of the cytoplasmic domain in regulating CD44 function. J Cell Sci 107: 2353–2359.

    Google Scholar 

  • Isacke CM, Yarwood H (2002) The hyaluronan receptor, CD44. Int J Biochem Cell Biol 34: 718–221.

    Google Scholar 

  • Ishii S, Ford R, Thomas P, Nachman A, Steele Jr G, Jessup JM (1993) CD44 participates in the adhesion of humancolorectal carcinoma cells to laminin and type IV collagen. Surg Oncol 2: 255–264.

    Google Scholar 

  • Ishikawa H, Tamura A, Matsui T, Sasaki H, Hakoshima T, Tsukita S, Tsukita S (2001) Structural conversion between open and closed forms of radixin: Low-angle shadowing electron microscopy. J Mol Biol 310: 973–978.

    Google Scholar 

  • Ishiwatari-Hayasaka H, Fujimoto T, Osawa T, Hirama T, Toyama-Sorimachi N, Miyasaka M (1999) Requirements for signal delivery through CD44: Analysis using CD44-Fas chimeric proteins. J Immunol 163: 1258–1264.

    Google Scholar 

  • Isola NR, Harn HJ, Cooper DL (1991) Screening recombinant DNA libraries: A rapid and efficient method for isolating cDNA clones utilizing the PCR. Biotechniques 11: 580–582.

    Google Scholar 

  • Itoh Y, Okanoue T (2000) Chemotactic cytokines (chemokines) in human hepatitis and experimental hepatitis models: Which ones play the crucial role?. J Gastroenterol 35: 724–725.

    Google Scholar 

  • Jackson DG, Bell JI, Dickinson R, Timans J, Shields J, Whittle N (1995) Proteoglycan forms of the lymphocyte homing receptor CD44 are alternatively spliced variants containing the v3 exon. J Cell Biol 128: 673–685.

    Google Scholar 

  • Jackson DG, Buckley J, Bell JI (1992) Multiple variants of the human lymphocyte homing receptor CD44 generated by insertions at a single site in the extracellular domain. J Biol Chem 267: 4732–4739.

    Google Scholar 

  • Jacobson K, O'Dell D, August JT (1984a) Lateral diffusion of an 80,000-dalton glycoprotein in the plasma membrane of murine fibroblasts: Relationships to cell structure and function. J Cell Biol 99: 1624–1633.

    Google Scholar 

  • Jacobson K, O'Dell D, Holifield B, Murphy TL, August JT (1984b) Redistribution of a major cell surface glycoprotein during cell move-ment. J Cell Biol 99: 1613–1623.

    Google Scholar 

  • Jalkanen S, Bargatze RF, de los Toyos J, Butcher EC (1986) A lymphoid cell surface protein involved in endothelial cell recognition and lymphocyte homing in man. Eur J Immunol 16: 1195–1202.

    Google Scholar 

  • Jalkanen S, Jalkanen M (1992) Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol 116: 817–825.

    Google Scholar 

  • Jalkanen S, Jalkanen M, Bargatze R, Tammi M, Butcher EC (1988) Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man. J Immunol 141: 1615–1623.

    Google Scholar 

  • Janes PW, Ley SC, Magee AI (1999) Aggregation of lipid rafts accom-panies signaling via the T cell antigen receptor. J Cell Biol 147: 447–461.

    Google Scholar 

  • Jones M, Tussey L, Athanasou N, Jackson DG (2000) Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action. J Biol Chem 275: 7964–7974.

    Google Scholar 

  • Jones PH, Bishop LA, Watt FM (1996) Functional significance of CD9 association with beta 1 integrins in human epidermal keratinocytes. Cell Adhes Commun 4: 297–305.

    Google Scholar 

  • Jothy S (2003) CD44 and its partners in metastasis. Clin Exp Metastasis 20: 195–201.

    Google Scholar 

  • Kalomiris EL, Bourguignon LY (1989) Lymphoma protein kinase C is associated with the transmembrane glycoprotein, GP85, and may function in GP85-ankyrin binding. J Biol Chem 264: 8113–8119.

    Google Scholar 

  • Kansas GS, Wood GS, Daily MO (1989) A family of cell-surface glyco-proteins defined by a putative anti-endothelial cell receptor antibody in man. J Immunol 142: 3050–3057.

    Google Scholar 

  • Katagiri YU, Kiyokawa N, Fujimoto J (2001) A role for lipid rafts in immune cell signaling. Microbiol Immunol 45: 1–8.

    Google Scholar 

  • Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, Chikuma S, Yagita H, Okumura K, Murakami M, Saiki I, Chambers AF, Uede T (1999) CD44 variants but not CD44s cooperate with beta1-containing integrins to permit cells to bind to osteopontin independently of arginine–glycine–aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res 59: 219–226.

    Google Scholar 

  • Kawano Y, Okamoto I, Murakami D, Itoh H, Yoshida M, Ueda S, Saya H (2000) Ras oncoprotein induces CD44 cleavage through phosphoinosi-tide 3-OH kinase and the rho family of small G proteins. J Biol Chem 275: 29628–29635.

    Google Scholar 

  • Kaya G, Rodriguez I, Jorcano JL, Vassalli P, Stamenkovic I (1997) Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter dis-rupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation. Genes Dev 11: 996–1007.

    Google Scholar 

  • Kaya G, Rodriguez I, Jorcano JL, Vassalli P, Stamenkovic I (1999) Cutaneous delayed-type hypersensitivity response is inhibited in trans-genic mice with keratinocyte-specific CD44 expression defect. J Invest Dermatol 113: 137–138.

    Google Scholar 

  • Kennel SJ, Lankford TK, Foote LJ, Shinpock SG, Stringer C (1993) CD44 expression on murine tissues. J Cell Sci 104: 373–382.

    Google Scholar 

  • Khaldoyanidi S, Denzel A, Zöller M (1996) Requirement for CD44 in stem cell proliferation and homing. J Leukoc Biol 60: 579–592.

    Google Scholar 

  • Khaldoyanidi S, Karakhanova S, Sleeman J, Herrlich P, Ponta H (2002) CD44 variant-specific antibodies trigger hemopoiesis by selective release of cytokines from bone marrow macrophages. Blood 99: 3955–3961.

    Google Scholar 

  • Khaldoyanidi S, Moll J, Karakhanova S, Herrlich P, Ponta H (1999) Hyaluronate-enhanced hematopoiesis: Two different receptors trigger the release of interleukin-1 beta and interleukin-6 from bone marrow macrophages. Blood 94: 940–949.

    Google Scholar 

  • Khaldoyanidi S, Schnabel D, Föhr N, Zöller M(1997) Functional activity of CD44 isoforms in hematopoesis of the rat. Br J Haematol 96: 31–45.

    Google Scholar 

  • Khan SA, Lopez-Chua CA, Zhang J, Fisher LW, Sorensen ES, Denhardt DT (2002) Soluble osteopontin inhibits apoptosis of adher-ent endothelial cells deprived of growth factors. J Cell Biochem 85: 728–736.

    Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by rho and rho-associated kinase (rho-kinase). Science 273: 245–248.

    Google Scholar 

  • Kinashi T, Springer TA (1994) Adhesion molecules in hematopoietic cells. Blood Cells 20: 25–28.

    Google Scholar 

  • Kincade PW (1991) Molecular interactions between stromal cells and B lymphocyte precursors. Semin Immunol 3: 379–390.

    Google Scholar 

  • Kincade PW (1992) Cell interaction molecules and cytokines which participate in B lymphopoieses. Baillieres Clin Haematol 5: 575–598.

    Google Scholar 

  • Kincade, PW, He Q, Ishihara K, Miyake K, Lesley J, Hyman R (1993) CD44 and other cell interaction molecules contributing to B lymphopoiesis. Curr Top Microbiol Immunol 184: 215–222.

    Google Scholar 

  • Kissil JL, Johnson KC, Eckman MS, Jacks T (2002) Merlin phospho-rylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 277: 10394–10399.

    Google Scholar 

  • Knudson CB, Knudson W (1993) Hyaluronan-binding proteins in development, tissue homeostasis and disease. FASEB J 7: 1233–1241.

    Google Scholar 

  • Knudson W, Bartnik E, Knudson GB (1993) Assembly of pericellular matrices by COS-7 cells transfected with CD44 lymphocyte-homing receptor genes. Proc Natl Acad Sci USA 90: 4003–4007.

    Google Scholar 

  • Kobayashi M, Imamura M, Uede T, Sakurada K, Maeda S, Iwasaki H, Tsuda Y, Musashi M, Miyazaki T (1994) Expression of adhesion molecules on human hematopoietic progenitor cells at different maturational stages. Stem Cells Dayt 12: 316–321.

    Google Scholar 

  • Kobayashi T, Gu F, Gruenberg J (1998) Lipids, lipid domains and lipid– protein interactions in endocytic membrane traffic. Semin Cell Dev Biol 9: 517–526.

    Google Scholar 

  • König H, Moll J, Ponta H, Herrlich P (1996) Trans-activating factors regulate the expression of CD44 splice variants. EMBO J 15: 4030–4039.

    Google Scholar 

  • König H, Ponta H, Herrlich P (1998) Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 17: 2904–2913.

    Google Scholar 

  • Koopman G, Heider KH, Horst E, Adolf GR, van den Berg F, Ponta H, Herrlich P, Pals ST (1993) Activated human lymphocytes and aggressive non-Hodgkin lymphomas express a homologue of the rat metastasis-associated variant of CD44. J Exp Med 177: 897–904.

    Google Scholar 

  • Lacy BE, Underhill CB (1987) The hyaluronate receptor is associated with actin filaments. J Cell Biol 105: 1395–1404.

    Google Scholar 

  • Lee JY, Spicer AP (2000) Hyaluronan: A multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol 12: 581–586.

    Google Scholar 

  • Legg JW, Isacke CM (1998) Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr Biol 8: 705–708.

    Google Scholar 

  • Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM(2002) A novel PKC-regulated mechanism controls CD44 ezrin association and directional cell motility. Nat Cell Biol 4: 399–407.

    Google Scholar 

  • Lesley J, English NM, Gal I, Mikecz K, Day AJ, Hyman R (2002) Hyaluronan binding properties of a CD44 chimera containing the link module of TSG-6. J Biol Chem 277: 26600–26608.

    Google Scholar 

  • Lesley J, Hyman R (1992) CD44 can be activated to function as an hyaluronic acid receptor in normal murine T cells. Eur J Immunol 22: 2719–2723.

    Google Scholar 

  • Lesley J, Hyman R, Kincade PW (1993a) CD44 and its interaction with extracellular matrix. Adv Immunol 54: 271–335.

    Google Scholar 

  • Lesley J, Kincade PW, Hyman R (1993b) Antibody-induced activation of the hyaluronan receptor function of CD44 requires multivalent binding by antibody. Eur J Immunol 23: 1902–1909.

    Google Scholar 

  • Lewinsohn DM, Nagler A, Ginzton N, Greenberg P, Butcher EC (1990) Hematopoietic progenitor cell expression of the H-CAM (CD44) homing-associated adhesion molecule. Blood 75: 589–595.

    Google Scholar 

  • Li R, Wong N, Jabali MD, Johnson P (2001) CD44-initiated cell spread-ing induces Pyk2 phosphorylation, is mediated by Src family kinases, and is negatively regulated by CD45. J Biol Chem 276: 28767–28773.

    Google Scholar 

  • Liao HX, Levesque MC, Patton K, Bergamo B, Jones D, Moody MA, Telen MJ, Haynes BF (1993) Regulation of human CD44H and CD44E isoform binding to hyaluronan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies. J Immunol 151: 6490–6499.

    Google Scholar 

  • Lin YH, Huang CJ, Chao JR, Chen ST, Lee SF, Yen JJ, Yang-Yen HF (2000) Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte– macrophage colony-stimulating factor. Mol Cell Biol 20: 2734–2742.

    Google Scholar 

  • Lin YH, Yang-Yen HF (2001) The osteopontin–CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 276: 46024–46030.

    Google Scholar 

  • Liu D, Sy MS (1997) Phorbol myristate acetate stimulates the dimer-ization of CD44 involving a cysteine in the transmembrane domain. J Immunol 159: 2702–2711.

    Google Scholar 

  • Lokeshwar VB, Bourguignon LY (1991) Post-translational protein modification and expression of ankyrin-binding site(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis. J Biol Chem 266: 17983–17989.

    Google Scholar 

  • Lokeshwar VB, Bourguignon LY (1992) The lymphoma transmembrane glycoprotein GP85 (CD44) is a novel guanine nucleotide-binding protein which regulates GP85 (CD44)–ankyrin interaction. J Biol Chem 267: 22073–22078.

    Google Scholar 

  • Lokeshwar VB, Fregien N, Bourguignon LY (1994) Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. J Cell Biol 126: 1099–1109.

    Google Scholar 

  • Long MW (1992) Blood cell cytoadhesion molecules. Exp Hematol 20: 288–298.

    Google Scholar 

  • Lundell BI, Mccarthy JB, Kovach NL, Verfaillie CM(1997) Activation of beta1 integrins on CMLprogenitors reveals cooperation between beta1 integrins and CD44 in the regulation of adhesion and proliferation. Leukemia 11: 822–829.

    Google Scholar 

  • Magee T, Pirinen N, Adler J, Pagakis SN, Parmryd I (2002) Lipid rafts: Cell surface platforms for T cell signaling. Biol Res 35: 127–131.

    Google Scholar 

  • Marhaba R, Bourouba M, Zöller M (2003) CD44v7 interferes with activation-induced cell death by up-regulation of anti-apoptotic gene expression. J Leukoc Biol 74: 135–148.

    Google Scholar 

  • Martin TA, Harrison G, Mansel RE, Jiang WG (2003) The role of CD44/ezrin complex in cancer metastasis. Crit Rev Oncol Hematol 46: 165–186.

    Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein RHO. EMBO J 15: 2208–2216.

    Google Scholar 

  • Matter N, Herrlich P, König H (2002) Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420: 691–695.

    Google Scholar 

  • Matter N, Marx M, Weg-Remers S, Ponta H, Herrlich P, König H (2000) Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J Biol Chem 275: 35353–35360.

    Google Scholar 

  • McKallip RJ, Do Y, Fisher MT, Robertson JL, Nagarkatti PS, Nagarkatti M (2002) Role of CD44 in activation-induced cell death: CD44-deficient mice exhibit enhanced T cell response to conventional and superantigens. Int Immunol 14: 1015–1026.

    Google Scholar 

  • Mertens G, Cassiman JJ, Van den Berghe H, Vermylen J, David G (1992) Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties. J Biol Chem 267: 20435–20443.

    Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378: 386–390.

    Google Scholar 

  • Miceli MC, Moran M, Chung CD, Patel VP, Low T, Zinnanti W (2001) Co-stimulation and counter-stimulation: Lipid raft clustering controls TCR signaling and functional outcomes. Semin Immunol 13: 115–128.

    Google Scholar 

  • Michel F, Grimaud L, Tuosto L, Acuto O (1998) Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J Biol Chem 273: 31932–31938.

    Google Scholar 

  • Millan J, Montoya MC, Sancho D, Sanchez-Madrid F, Alonso MA(2002) Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99: 978–984.

    Google Scholar 

  • Miller KG (2003) A role for moesin in polarity. Trends Cell Biol 13: 165–168.

    Google Scholar 

  • Miyake K, Kincade PW (1990) A new adhesion mechanism involving hyaluronate and CD44. Curr Top Microbiol Immunol 166: 87–90.

    Google Scholar 

  • Miyake K, Medina KL, Hayashi SI, Ono S, Hamaoka T, Kincade PW (1990a) Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med 171: 477–488.

    Google Scholar 

  • Miyake K, Underhill CB, Lesley J, Kincade PW (1990b) Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 172: 69–75.

    Google Scholar 

  • Mollenhauer J (1997) Annexins: What are they good for? Cell Mol Life Sci 53: 506–507.

    Google Scholar 

  • Mori S, Ronnstrand L, Yokote K, Engstrom A, Courtneidge SA Claesson-Welsh L, Heldin CH (1993) Identification of two juxta-membrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO J 12: 2257–2264.

    Google Scholar 

  • Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA, Gutmann DH, Ponta H, Herrlich P (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15: 968–980.

    Google Scholar 

  • Nakashima I, Kato M, Akhand AA, Suzuki H, Takeda K, Hossain K, Kawamoto Y (2002) Redox-linked signal transduction pathways for protein tyrosine kinase activation. Antioxid Redox Signal 4: 517–531.

    Google Scholar 

  • Nandi A, Estess P, Siegelman MH (2000) Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem 275: 14939–14948.

    Google Scholar 

  • Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39: 527–579.

    Google Scholar 

  • Naor D, Sionov RV, Ish-Shalom D (1997) CD44 in cancer. In: Vande Woude GF, Klein G, eds. Advances in Cancer Research, Vol. 70. San Diego: Academic, pp. 243–318

    Google Scholar 

  • Nasreen N, Mohammed KA, Hardwick J, Van Horn RD, Sanders K, Kathuria H, Loghmani F, Antony VB (2002) Low molecular weight hyaluronan induces malignant mesothelioma cell (MMC) prolifera-tion and haptotaxis: role of CD44 receptor in MMC proliferation and haptotaxis. Oncol Res 13: 71–78.

    Google Scholar 

  • Nau GJ, Guilfoile P, Chupp GL, Berman JS, Kim SJ, Kornfeld H, Young RA (1997) A chemoattractant cytokine associated with gran-ulomas in tuberculosis and silicosis. Proc Natl Acad Sci USA 94: 6414–6419.

    Google Scholar 

  • Neame PJ, Barry FP (1993) The link proteins. Experientia 49: 393–402.

    Google Scholar 

  • Neame SJ, Isacke CM (1992) Phosphorylation of CD44 in vivo requires both Ser323 and Ser325, but does not regulate membrane localization or cytoskeletal interaction in epithelial cells. EMBO J 11: 4733–4738.

    Google Scholar 

  • Neame SJ, Isacke CM(1993) The cytoplasmic tail of CD44 is required for basolateral localization in ephitelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. J Cell Biol 121: 1299–1310.

    Google Scholar 

  • Neame SJ, Uff CR, Sheikh H, Wheatley, SC, Isacke CM (1995) CD44 exhibits a cell type dependent interaction with Triton X-100 insoluble, lipid rich, plasma membrane domains. J Cell Sci 108: 3127–3135.

    Google Scholar 

  • Nestl A, von Stein OD, Zatloukal K, Thies WG, Herrlich P, Hofmann M, Sleeman JP (2001) Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61: 1569–1577.

    Google Scholar 

  • Ng T, Parsons M, Hughes WE, Monypenny J, Zicha D, Gautreau A, Arpin M, Gschmeissner S, Verveer PJ, Bastiaens PI, Parker PJ (2001) Ezrin is a downstream effector of trafficking PKC–integrin complexes involved in the control of cell motility. EMBO J 20: 2723–2741.

    Google Scholar 

  • Okamoto I, Kawano Y, Tsuiki H, Sasaki J, Nakao M, Matsumoto M, Suga M, Ando M, Nakajima M, Saya H (1999a) CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. Oncogene 18: 1435–1446.

    Google Scholar 

  • Okamoto I, Kawano Y, Matsumoto M, Suga M, Kaibuchi K, Ando M, Saya H (1999b) Regulated CD44 cleavage under the control of protein kinase C, calcium influx, and the Rho family of small Gproteins. J Biol Chem 274: 25525–25534.

    Google Scholar 

  • Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong AJ, Saya H (2001) Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol 155: 755–762.

    Google Scholar 

  • Okamoto I, Tsuiki H, Kenyon LC, Godwin AK, Emlet DR, Holgado-Madruga M, Lanham IS, Joynes CJ, Vo KT, Guha A, Matsumoto M, Ushio Y, Saya H, Wong AJ (2002) Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am J Pathol 160: 441–447.

    Google Scholar 

  • Oliferenko S, Kaverina I, Small JV, Huber LA (2000) Hyaluronic acid (HA) binding to CD44 activates Rac1 and induces lamellipodia outgrowth. J Cell Biol 148: 1159–1164.

    Google Scholar 

  • Oliferenko S, Paiha K, Harder T, Gerke V, Schwärzler C, Schwarz H, Beug H, Günthert U, Huber LA (1999) Analysis of CD44-containing lipid rafts: Recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol 146: 843–854.

    Google Scholar 

  • Omary MB, Trowbridge IS, Letarte M, Kagnoff MF, Isacke CM (1988) Structural heterogeneity of human Pgp-1 and its relationship with p85. Immunogenetics 27: 460–464.

    Google Scholar 

  • Oostendorp RA, Spitzer E, Brandl M, Eaves CJ, Dormer P (1998) Evidence for differences in the mechanisms by which antibodies against CD44 promote adhesion of erythroid and granulopoietic progenitors to marrow stromal cells. Br J Haematol 101: 436–445.

    Google Scholar 

  • Opanashuk LA, Mark RJ, Porter J, Damm D, Mattson MP, Seroogy KB (1999) Heparin-binding epidermal growth factor-like growth factor in hippocampus: Modulation of expression by seizures and anti-excitotoxic action. J Neurosci 19: 133–146.

    Google Scholar 

  • O'Regan A, Berman JS (2000) Osteopontin: A key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 81: 373–390.

    Google Scholar 

  • Orian-Rousseau V, Chen L, Sleeman JP, Herrlich P, Ponta H(2002) CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16: 3074–3086.

    Google Scholar 

  • Peach RJ, Hollenbaugh D, Stamenkovic I, Aruffo A(1993) Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol 122: 257–264.

    Google Scholar 

  • Peck D, Isacke CM (1998) Hyaluronan-dependent cell migration can be blocked by a CD44 cytoplasmic domain peptide containing a phosphoserine at position 325. J Cell Sci 111: 1595–1601.

    Google Scholar 

  • Penhallow RC, Class K, Sonoda H, Bolen JB, Rowley RB (1995) Temporal activation of nontransmembrane protein-tyrosine kinases following mast cell Fc epsilon RI engagement. J Biol Chem 270: 23362–23365.

    Google Scholar 

  • Perschl A, Lesley J, English N, Hyman R., Trowbridge IS (1995) Trans-membrane domain of CD44 is required for its detergent insolubility in fibroblasts. J Cell Sci 108: 1033–1041.

    Google Scholar 

  • Petch LA, Bockholt SM, Bouton A, Parsons JT, Burridge K (1995) Adhesion-induced tyrosine phosphorylation of the p130 Src substrate. J Cell Sci 108: 1371–1379.

    Google Scholar 

  • Peterson RM, Yu Q, Stamenkovic I, Toole BP (2000) Perturbation of hyaluronan interactions by soluble CD44 inhibits growth of murine mammary carcinoma cells in ascites. Am J Pathol 156: 2159–2167.

    Google Scholar 

  • Picker LJ, Butcher EC (1992) Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol 10: 561–591.

    Google Scholar 

  • Picker LJ, Nakache M, Butcher EC (1989) Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types. J Cell Biol 109: 927–937.

    Google Scholar 

  • Pierini LM, Eddy RJ, Fuortes M, Seveau S, Casulo C, Maxfield FR (2003) Membrane lipid organization is critical for human neutrophil polarization. J Biol Chem 278: 10831–10841.

    Google Scholar 

  • Pike LJ (2003) Lipid rafts: Bringing order to chaos. J Lipid Res 44: 655–667.

    Google Scholar 

  • Pohl M, Sakurai H, Stuart RO, Nigam SK (2000) Role of hyaluronan and CD44 in in vitro branching morphogenesis of ureteric bud cells. Dev Biol 224: 312–325.

    Google Scholar 

  • Ponta H, Herrlich P (1998) The CD44 protein family: Roles in embryo-genesis and tumor progression. Front Biosc 3: 650–656.

    Google Scholar 

  • Ponta H, Sherman L, Herrlich PA (2003) CD44: From adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4: 33–45.

    Google Scholar 

  • Protin U, Schweighoffer T, Jochum W, Hilberg F (1999) CD44-deficient mice develop normally with changes in subpopulations and recirculation of lymphocyte subsets. J Immunol 163: 4917–4923.

    Google Scholar 

  • Pure E, Cuff CA (2001) A crucial role for CD44 in inflammation. Trends Mol Med 7: 213–221.

    Google Scholar 

  • Quackenbush EJ, Vera S, Greaves A, Letarte M (1990) Confirmation by peptide sequence and co-expression on various cell types of the identity of CD44 and P85 glycoprotein. Mol Immunol 27: 947–955.

    Google Scholar 

  • Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C (1997) Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389: 725–730.

    Google Scholar 

  • Roper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2: 582–592.

    Google Scholar 

  • Rösel M, Föger N, Zöller M (1998) Involvement of CD44 exon v10 in B cell activation. Tissue Antigens 52: 99–113.

    Google Scholar 

  • Rossbach HC, Krizanac-Bengez L, Santos EB, Gooley TA, Sandmaier BM (1996) An antibody to CD44 enhances hematopoiesis in long-term marrow cultures. Exp Hematol 24: 221–227.

    Google Scholar 

  • Rozsnyay Z (1999) Signaling complex formation of CD44 with Src-related kinases. Immunol Lett 68: 101–108.

    Google Scholar 

  • Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL, Schlossman SF (1988) The CD44 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc Natl Acad Sci USA 85: 5190–5194.

    Google Scholar 

  • Ruiz P, Schwärzler C, Günthert U (1995) CD44 isoforms during differentiation and development. Bioessays 17: 17–24.

    Google Scholar 

  • Savani RC, Cao G, Pooler PM, Zaman A, Zhou Z, DeLisser HM (2001) Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem 276: 36770–36778.

    Google Scholar 

  • Schmidt DS, Klingbeil P, Schmölzer M, Zöller M (2004) CD44 variant isoforms associate with tetraspanius and EpCAM. Exp Cell Res doi:10.1016.

  • Schmits R, Filmus J, Gerwin N, Senaldi G, Kiefer F, Kundig T, Wakeham A, Shahinian A, Catzavelos C, Rak J, Furlonger C, Zakarian A, Simard JJ, Ohashi PS, Paige CJ, Gutierrez-ramos JC, Mak TW (1997) CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90: 2217–2233.

    Google Scholar 

  • Screaton GR, Bell MV, Bell JI, Jackson DG (1993) The identification of a new alternative exon with highly restricted tissue expression in transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J Biol Chem 268: 12235–12238.

    Google Scholar 

  • Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI (1992) Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci USA 89: 12160–12164.

    Google Scholar 

  • Seiter S, Arch R, Reber S, Komitowski D, Hofmann M, Ponta H, Herrlich P, Matzku S, Zöller M(1993) Prevention of tumour metastasis formation by anti-variant CD44. J Exp Med 177: 443–455.

    Google Scholar 

  • Seiter S, Engel P, Föhr N, Zöller M (1999) Dual function of CD44 variant isoform v3 in allergic and delayed type hypersensitivity. J Invest Dermatol 113: 11–21.

    Google Scholar 

  • Serrador JM, Alonso-Lebrero JL, del Pozo MA, Furthmayr H, Schwartz-Albiez R, Calvo J, Lozano F, Sanchez-Madrid F (1997) Moesin interacts with the cytoplasmic region of intercellular adhe-sion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J Cell Biol 138: 1409–1423.

    Google Scholar 

  • Sethi A, Gote L, Nagarkatti M, Nagarkatti PS (1991) T-cell-receptor-independent activation of cytolytic activity of cytotoxic T lymphocytes mediated through CD44 and gp90MEL-14. Proc Natl Acad Sci USA 88: 7877–7881.

    Google Scholar 

  • Seveau S, Eddy RJ, Maxfield FR, Pierini LM (2001) Cytoskeleton-dependent membrane domain segregation during neutrophil polariza-tion. Mol Biol Cell 12: 3550–3562.

    Google Scholar 

  • Sherman L, Sleeman J, Dall P, Hekele A, Moll J, Ponta H, Herrlich P (1996) The CD44 proteins in embryonic development and in cancer. Curr Top Microbiol Immunol 213: 249–269.

    Google Scholar 

  • Sherman L, Wainwright D, Ponta H, Herrlich P (1998) A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth. Genes Dev 12: 1058–1071.

    Google Scholar 

  • Sherman LS, Rizvi TA, Karyala S, Ratner N (2000) CD44 enhances neuregulin signaling by Schwann cells.J Cell Biol 150: 1071–1084.

    Google Scholar 

  • Shimizu Y, Shaw S (1991) Lymphocyte interactions with extracellular matrix. FASEB J 5: 2292–2299.

    Google Scholar 

  • Siegelman MH,Stanescu D, Estess P (2000) The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion. J Clin Invest 105: 683–691.

    Google Scholar 

  • Singleton PA, Bourguignon LY (2002) CD44v10 interaction with Rho-kinase (ROK) activates inositol 1,4,5-triphosphate (IP3) receptor-mediated Ca 2 +signaling during hyaluronan (HA)-induced endothelial cell migration. Cell Motil Cytoskeleton 53: 293–316.

    Google Scholar 

  • Skelton TP, Zeng C, Nocks A, Stamenkovic I (1998) Glycosylation pro-vides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J Cell Biol 140: 431–446.

    Google Scholar 

  • Skubitz KM, Campbell KD, Skubitz AP (1998) CD43 is associated with tyrosine kinase activity in human neutrophils. J Leukoc Biol 64: 803–809.

    Google Scholar 

  • Sleeman J, Rudy W, Hofmann M, Moll J, Herrlich P, Ponta H (1996) Regulated clustering of variant CD44 proteins increases their hyaluronate binding capacity. J Cell Biol 135: 1139–1150.

    Google Scholar 

  • Smadja-Joffe F, Legras S, Girard N, Li Y, Delpech B, Bloget F, Morimoto K, LeBousse-Kerdiles C, Clay D, Jasmin C, Levesque JP (1996) CD44 and hyaluronan binding by human myeloid cells. Leuk Lymphoma 21: 407–420.

    Google Scholar 

  • Small JV, Rottner K, Kaverina I (1999) Functional design in the actin cytoskeleton. Curr Opin Cell Biol 11: 54–60.

    Google Scholar 

  • Smith LL, Greenfield BW, Aruffo A, Giachelli CM (1999) CD44 is not an adhesive receptor for osteopontin. J Cell Biochem 73: 20–30.

    Google Scholar 

  • Sohara Y, Ishiguro N, Machida K, Kurata H, Thant AA, Senga T, Matsuda S, Kimata K, Iwata H, Hamaguchi M (2001) Hyaluronan activates cell motility of v-Src-transformed cells via Ras-mitogen-activated protein kinase and phosphoinositide 3-kinase-Akt in a tumor-specific manner. Mol Biol Cell 12: 1859–1868.

    Google Scholar 

  • Stamenkovic L, Aruffo A, Amiot M, Seed B (1991) The hematopoietic and epithelial forms of CD44 are distinct polypeptides with differ-ent adhesion potentials for hyaluronate-bearing cells. EMBO J 10: 343–348.

    Google Scholar 

  • Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and meta-stasis. Annu Rev Cell Biol 9: 541–573.

    Google Scholar 

  • Stipp CS, Kolesnikova TV, Hemler ME (2003) Functional domains in tetraspanin proteins. Trends Biochem Sci 28: 106–112.

    Google Scholar 

  • Stoop R, Gal I, Glant TT, McNeish JD, Mikecz K (2002) Trafficking of CD44-deficient murine lymphocytes under normal and inflammatory conditions. Eur J Immunol 32: 2532–2542.

    Google Scholar 

  • Stoop R, Kotani H, McNeish JD, Otterness IG, Mikecz K (2001) Increased resistance to collagen-induced arthritis in CD44-deficient DBA/1 mice. Arthritis Rheum 44: 2922–2931.

    Google Scholar 

  • Sugimoto K, Tsurukami Y, Hoshi H, Kadowaki S, LeBousse-Kerdiles MC, Smadja-Joffe F, Mori KJ (1994) Effects of anti-CD44 monoclonal antibody on adhesion of erythroid leukemic cells (ELM-I-1) to hematopoietic supportive cells (MS-5): CD44, but not hyaluronate-mediated, cell–cell adhesion. Exp Hematol 22: 488–494.

    Google Scholar 

  • Taher TE, Smit L, Griffioen AW, Schilder-Tol EJ, Borst J Pals ST (1996) Signaling through CD44 is mediated by tyrosine kinases. Association with p56lck in T lymphocytes. J Biol Chem 271: 2863–2867

    Google Scholar 

  • Takahashi K, Eto H, Tanabe KK (1999) Involvement of CD44 in matrix metalloproteinase-2 regulation in human melanoma cells. Int J Cancer 80: 387–395.

    Google Scholar 

  • Takazoe K, Tesch GH, Hill PA, Hurst LA, Jun Z, Lan HY, Atkins RC, Nikolic-Paterson DJ (2000) CD44-mediated neutrophil apoptosis in the rat. Kidney Int 58: 1920–1930.

    Google Scholar 

  • Tan PH, Santos EB, Rossbach HC, Sandmaier BM (1993) Enhancement of natural killer activity by an antibody to CD44. J Immunol 150: 812–820.

    Google Scholar 

  • Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S (1993) T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361: 79–82.

    Google Scholar 

  • Tapon N, Hall A (1997) Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 9: 86–92.

    Google Scholar 

  • Tarone G, Ferracini R, Galetto G, Comoglio P (1984) A cell surface integral membrane glycoprotein of 85,000 mol wt (gp85) associated with Triton X-100-insoluble cell skeleton. J Cell Biol 99: 512–519.

    Google Scholar 

  • Tedder TF, Steeber DA, Chen A, Engel P (1995) The selectins: Vascular adhesion molecules. FASEB J 9: 866–873.

    Google Scholar 

  • Teder P, Vandivier RW, Jiang D, Liang J, Cohn L, Pure E, Henson PM, Noble PW (2002) Resolution of lung inflammation by CD44. Science 296: 155–158.

    Google Scholar 

  • Termeer C, Averbeck M, Hara H, Eibel H, Herrlich P, Sleeman J, Simon JC (2003) Targeting dendritic cells with CD44 monoclonal anti-bodies selectively inhibits the proliferation of naive CD4 +T-helper cells by induction of FAS-independent T-cell apoptosis. Immunology 109: 32–40.

    Google Scholar 

  • Terpe A, Franke F, Stark H, Gustmann C, Mackay C, Marston W, Günthert U (1993) Occurrence of CD44 and its isoforms under orthological and pathological conditions. Verh Dtsch Ges Pathol 77: 276–281.

    Google Scholar 

  • Terpe HJ, Stark H, Prehm P, Günthert U (1994) CD44 variant isoforms are preferentially expressed in basal epithelial of non-malignant human fetal and adult tissues. Histochemistry 101: 79–89.

    Google Scholar 

  • Thomas L, Byers HR, Vink J, Stamenkovic I (1992) CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol 118: 971–977.

    Google Scholar 

  • Thomas SM, Brugge JS (1997) Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 13: 513–609.

    Google Scholar 

  • Tölg C, Hofmann M, Herrlich P, Ponta H (1993) Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res 21: 1225–1229.

    Google Scholar 

  • Toyama-Sorimachi N, Miyasaka M (1994) A novel ligand for CD44 is sulfated proteoglycan. Int Immunol 6: 655–660.

    Google Scholar 

  • Tsatas D, Kanagasundaram V, Kaye A, Novak U (2002) EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci 9: 282–288.

    Google Scholar 

  • Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S (1994) ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126: 391–401.

    Google Scholar 

  • Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan receptors. J Biol Chem 277: 4589–4592.

    Google Scholar 

  • Twamley-Stein GM, Pepperkok R, Ansorge W, Courtneidge SA (1993) The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc Natl Acad Sci USA 90: 7696–7700.

    Google Scholar 

  • Underhill C (1992) CD44: The hyaluronan receptor. J Cell Sci 103: 293–298.

    Google Scholar 

  • Van der Voort R, Keehnen RM, Beuling EA, Spaargaren M, Pals ST (2000) Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans. J Exp Med 192: 1115–1124.

    Google Scholar 

  • Van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit L, David G, Hartmann G, Gherardi E, Pals ST (1999) Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 274: 6499–6506.

    Google Scholar 

  • Verfaillie CM, Benis A, Iida J, McGlave PB, McCarthy JB (1994) Adhesion of committed human hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibronectin: Cooperation between the integrin alpha 4 beta 1 and the CD44 adhesion Receptor. Blood 84: 1802–1811.

    Google Scholar 

  • Wallach-Dayan SB, Grabovsky V, Moll J, Sleeman J, Herrlich P, Alon R, Naor D (2001) CD44-dependent lymphoma cell dissemination: A cell surface CD44 variant, rather than standard CD44, supports in vitrolymphoma cell rolling on hyaluronic acid substrate and its in vivo accumulation in the peripheral lymph nodes. J Cell Sci 114: 3463–3477.

    Google Scholar 

  • Wang Q, Teder P, Judd NP, Noble PW, Doerschuk CM (2002) CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice. Am J Pathol 161: 2219–2228.

    Google Scholar 

  • Wang W(1993) Functional studies of adhesion molecules on CD4–CD8– double negative T cells of autoimmune MRL/Mp-Ipr/mice. Hokkaido Igaku Zasschi 68: 755–766.

    Google Scholar 

  • Weber B, Rösel M, Arch R, Möller P, Zöller M (1996) Expression of variant isoforms of CD44 during ontogeny of the rat: Evidence for divergent functions of distinct exon combinations. Different 60: 17–29.

    Google Scholar 

  • Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S (2002) Phosphorylation-dependent interaction of osteopontin with its recep-tors regulates macrophage migration and activation. J Leukoc Biol 72: 752–761.

    Google Scholar 

  • Weg-Remers S, Ponta H, Herrlich P, König H (2001) Regulation of alter-native pre-mRNA splicing by the ERK MAP-kinase pathway. EMBO J 20: 4194–4203.

    Google Scholar 

  • Weiss JM, Renkl AC, Maier CS, Kimmig M, Liaw L, Ahrens T, Kon S, Maeda M, Hotta H, Uede T, Simon JC (2001) Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. J Exp Med 194: 1219–1229.

    Google Scholar 

  • Welsh CF, Zhu D, Bourguignon LY (1995) Interaction of CD44 variant isoforms with hyaluronic acid and the cytoskeleton in human prostate cancer cells. J Cell Physiol 164: 605–612.

    Google Scholar 

  • Werb Z (1997) ECM and cell surface proteolysis: Regulating cellular ecology. Cell 91: 439–442.

    Google Scholar 

  • Wielenga VJ, Smits R, Korinek V, Smit L, Kielman M, Fodde R, Clevers H, Pals ST (1999) Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol 154: 515–523.

    Google Scholar 

  • Wilson JG (1997) Adhesive interactions in hemopoiesis. Acta haematol 97: 6–12.

    Google Scholar 

  • Winoto A (1997) Cell death in the regulation of immune responses. Curr Opin Immunol 9: 365–370.

    Google Scholar 

  • Wirth K, Arch R, Somasundaram C, Hofmann M, Weber B, Herrlich P, Matzku S, Zöller M (1993) Expression of CD44 isoforms carrying metastasis-associated sequences in newborn and adult rats. Eur J Cancer 29A: 1172–1177.

    Google Scholar 

  • Wittig BM, Johansson B, Zöller M, Schwärzler C, Günthert U (2000) Abrogation of experimental colitis correlates with increased apoptosis in mice deficient for CD44 variant exon 7 (CD44v7). J Exp Med 191: 2053–2064.

    Google Scholar 

  • Wobus M, Kuns R, Wolf C, Horn LC, Kohler U, Sheyn I, Werness BA, Sherman LS (2001) CD44 mediates constitutive type I receptor signaling in cervical carcinoma cells. Gynecol Oncol 83: 227–234.

    Google Scholar 

  • Wobus M, Rangwala R, Sheyn I, Hennigan R, Coila B, Lower EE, Yassin RS, Sherman LS (2002) CD44 associates with EGFRand erbB2 in metastasizing mammary carcinoma cells. Appl Immunohistochem Mol Morphol 10: 34–39.

    Google Scholar 

  • Wolff EA, Greenfield B, Taub DD, Murphy WJ, Bennett KL, Aruffo A (1999) Generation of artificial proteoglycans containing glycosaminoglycan-modified CD44. Demonstration of the interaction between rantes and chondroitin sulfate. J Biol Chem 274: 2518–2524.

    Google Scholar 

  • Wolffe EJ, Gause WC, Pelfrey CM, Holland SM, Steinberg AD, August JT (1990) The cDNA sequence of mouse Pgp-1 and homo-logy to human CD44 cell surface antigen and proteoglycan core/link proteins. J Biol Chem 265: 341–347.

    Google Scholar 

  • Wuthrich RP, Fan X, Ritthaler T, Sibalic V, Yu DJ, Loffing J, Kaissling B (1998) Enhanced osteopontin expression and macrophage infiltra-tion in MRL-Fas(lpr) mice with lupus nephritis. Autoimmunity 28: 139–150.

    Google Scholar 

  • Xuan JW, Hota C, Shigeyama Y, D'Errico JA, Somerman MJ, Chambers AF (1995) Site-directed mutagenesis of the arginine– glycine–aspartic acid sequence in osteopontin destroys cell adhesion and migration functions. J Cell Biochem 57: 680–690.

    Google Scholar 

  • Yang B, Yang BL, Savani RC, Turley EA (1994) Identification of a common hyaluronan binding motif in the hyaluronan binding proteins RHAMM, CD44 and link protein. EMBO J 13: 286–296.

    Google Scholar 

  • Yang H, Binns RM (1993) CD44 is involved in porcine natural cyto-toxicity. Cell Immunol 149: 227–236.

    Google Scholar 

  • Yang T, Witham TF, Villa L, Erff M, Attanucci J, Watkins S, Kondziolka D, Okada H, Pollack IF, Chambers WH (2002) Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: Implications for the use of dendritic cells for therapy of gliomas. Cancer Res 62: 2583–2591.

    Google Scholar 

  • Yasuda M, Nakano K, Yasumoto K, Tanaka Y (2002) CD44: Functional relevance to inflammation and malignancy. Histol Histopathol 17: 945–950.

    Google Scholar 

  • Yasuda M, Tanaka Y, Fujii K, Yasumoto K (2001) CD44 stimulation down-regulates Fas expression and Fas-mediated apoptosis of lung cancer cells. Int Immunol 13: 1309–1319.

    Google Scholar 

  • Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S, Tsukita S (1998) Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 140: 885–895.

    Google Scholar 

  • Yonemura S, Tsukita S, Tsukita S (1999) Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the orga-nization of microvilli in collaboration with activated ERM proteins. J Cell Biol 145: 1497–1509.

    Google Scholar 

  • Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13: 35–48.

    Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-â and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176.

    Google Scholar 

  • Yu Q, Toole BP, Stamenkovic I (1997) Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 186: 1985–1996.

    Google Scholar 

  • Yu WH, Woessner Jr JF, McNeish JD, Stamenkovic I (2002) CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 16: 307–323.

    Google Scholar 

  • Zada AA, Singh SM, Reddy VA, Elsasser A, Meisel A, Haferlach T, Tenen DG, Hiddemann W, Behre G (2003) Downregulation of c-Jun expression and cell cycle regulatory molecules in acute myeloid leukemia cells upon CD44 ligation. Oncogene 22: 2296–2308.

    Google Scholar 

  • Zhou DFH, Ding JF, Picker LF, Bargatze RF, Butcher EC, Goeddel DV (1989) Molecular cloning and expression of Pgp-1 – the mouse homolog of the human H-CAM (Hermes) lymphocyte homing receptor. J Immunol 143: 3390–3395.

    Google Scholar 

  • Zhu D, Bourguignon LY (1998) The ankyrin-binding domain of CD44s is involved in regulating hyaluronic acid-mediated functions and prostate tumor cell transformation. Cell Motil Cytoskeleton 39: 209–222.

    Google Scholar 

  • Zohar, R. Suzuki N, Suzuki K, Arora P, Glogauer M, McCulloch CA, Sodek J (2000) Intracellular osteopontin is an integral component of the CD44–ERM complex involved in cell migration. J Cell Physiol 184: 118–130.

    Google Scholar 

  • Zöller M (1996) Joint features of metastasis formation and lympho-cyte maturation and activation. Curr Top Microbiol Immunol 213: 215–247.

    Google Scholar 

  • Zöller M, Herrmann K, Büchner S, Seiter S, Claas C, Möller P (1997) Transient absence of CD44 expression and delay in development by anti-CD44 treatment during ontogeny: A knock-out surrogate?. Cell Growth Differentiation 8: 1211–1223.

    Google Scholar 

  • Zöller M, McElwee KJ, Engel P, Hoffmann R (2002) Transient CD44 variant isoform expression and reduction in CD4 +/CD25 +regulatory T cells in C3H/HeJ mice with alopecia areata. J Invest Dermatol 118: 983–992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marhaba, R., Zöller, M. CD44 in Cancer Progression: Adhesion, Migration and Growth Regulation. Histochem J 35, 211–231 (2004). https://doi.org/10.1023/B:HIJO.0000032354.94213.69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HIJO.0000032354.94213.69

Keywords

Navigation